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Numerical Relativity Simulations of
Compact Binary Mergers

Project: PHY23001 (2023-)

We perform large-scale simulations of BBH and BNS
mergers.

BBH: Main objective is to generate some of the first
catalogs of GW waveforms meeting accuracy
requirements for next-gen experiments such as LISA, the
ET, and CE.

BNS: Explore the impact of magnetic fields and
microphysics by performing very high-resolution NS
simulations.

Rotating star collapse: Study the MRI in differentially
rotating hypermassive neutron-stars
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An extraordinary era of Gravitational Wave Astronomy is coming!

Cosmic explorer

LISA
Einstein Telescope



GW astronomy requires accurate waveform
models, informed by Numerical Relativity
simulations. As GW detectors reach higher
sensitivity there is a need for even more
accurate NR gravitational waveforms of BNS
mergers.

That is
e solving the Einstein equations to evolve a
dynamical spacetime (Z4c formulation)

Coupled with...

e solving the MHD (fluids + magnetic
fields) on this dynamical spacetime

Plus...

e Nuclear processes (neutrinos, dense
nuclear matter EoS,...)
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We use our Numerical Relativity + MHD code  Daszuta+2021,ApJ SS, 257, 2
GR-Athena++ which uses oct-tree AMR and  Cook+2023, arXiv:2311.04989
task-based parallelism. It is based on the public code  Daszuta+2024, arXiv:2406.09139
Athena++.

We evolve the EE in the Z4c formulation, coupled with the GR Euler Equations written in
conservation law form, to exploit high-resolution shock capturing techniques.

Magnetic fields are evolved with the Maxwell equations in the ideal MHD approximation with
the Constraint Transport method.

e Mesh refinement is
implemented by flagging
individual = MeshBlocks
for refinement. The
MeshBlock is destroyed,
and replaced with 8
"child" MeshBlocks,
each with the same
number of points as its
parent, but half the
spatial extent.

https://www.athena-astro.app/

Stone+2020, ApJ SS, 249, 1


https://www.athena-astro.app/

GR-Athena++ leverages the task-based parallelism
paradigm of Athena++ to achieve excellent scalability
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BBH: Comparison of mesh-refinement methods

(Rashti+2024, CQG, 41, 9)
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The sphere-in-sphere approach
provides the best strategy overall
when considering computational
cost and the waveform accuracy




BBH: HR simulations to produce GW waveform
catalogs with the precision demanded by

upcoming gravitational detectors
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(Rashti+2024, in prep.)
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Unbound systems of two black holes and dynamical
Capture (Albanesi+2024, arXiv:2405.20398)

These results are then wused to validate .
effective-one-body models for dynamical (¢, X1, X2, Eo) = (3,0,0,1.017)
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Collapse of differentially rotating hypermassive NS (#2dopadnyay, Hammond

++ 2024, in prep)

The aim is to study the magnetorotational
instability and the turbulence it induces by
looking at distinct patterns in the magnetic
field, and the interaction between this field
and the fluid.

Additionally, we want to measure the
effective shear viscosity to calibrate future
simulations, and finally we will compare our
results with 2D simulations in the literature.




Magnetized Binary Neutron Star (utierrez+2024, inprep)
Mergers
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« We are currently conducting a campaign of BNS
simulations with different microphysics and magnetic

field structure
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Future directions

In addition to the current ongoing
projects.

We are about to finish the coupling of our
code with an M1 neutrino transport
scheme based on Radice++2022.

We are preparing very-high resolution
simulations (Texascale Days)

Our next simulations will be performed
with the full physics required to study
long-term postmerger BNS remnants,
the ejecta they produce, the launching of
jets, etc..




