FRONTERA USER'S MEETING WELCOME AND INTRO

1/27/21

Dan Stanzione PI, Frontera project

January 2021

WELCOME AND THANK YOU!

1/27/21

PURPOSE

- Given the pandemic, and everyone spending far too much time on zoom, we've tried to cut the agenda down to just the most important things:
 - ▶ We will update you on the project, and the future (this morning and tomorrow).
 - You will hear from your colleagues about exciting ways Frontera is being used (11 application talks and one technology talk).
 - ► You can tell us what we are doing wrong! (Two Feedback Panels)

WHAT IS FRONTERA? A PROJECT AND AN INSTRU/

► The Instrument

- ► The NSF's Leadership-class Computer System.
- Awarded in September 2018, began production operations in August 20 on budget).
- Debuted as the #5 Computer in the world.
 - Only one in Top 10 under \$100M.
- For some problems, was the fastest in the world (because of our focus o programmability, general purpose architecture).
- Over a year old, still #9 in the world
 - New #1 is Japan's \$1B+ Fugaku
 - ▶ Followed Frontera in the "All CPU" path.
- ► The Project:
 - ► ~30 FTEs spread over ~50 people at TACC + 10 partner institutions
 - Sysadmin, operators, networking, security, user support, allocations
 - Scientific code support, performance optimization and tuning, data management and curation, Al support, etc.
 - ► Education and Outreach (K-12, undergrad, grad, MSI engagement, training, public)
 - Project Leadership and Management

WHAT'S FRONTERA DONE IN A YEAR (AND A HALF)?

- About 30% of the time was diverted to emergency COVID response work between March-August (still a smaller fraction).
- Number of Jobs run: Over 2.4 Million (Job 2,461,862 started this morning)
- Node hours delivered: 80M (4 Billion+ Core Hours)
- ▶ Uptime is over 96%; the CPU and 2 GPU systems all have utilizations of 80% or higher.
- ▶ Requests in the last round were about 3x available capacity.
 - ► All "Highly Recommended" requests got at least 90% of the requested time.
- ► User Tickets: 1,043
- Frontera Community Slack: 12,777 messages (on average, 80 unique users each week)
- Cybersecurity incidents: ZERO
- ▶ 9 academic courses, 3 summer institutes, conference tutorials, lots of online training.

A FEW MORE ACCOMPLISHMENTS. . .

- ▶ Top 500, still #8. I/O 500, #3
- Used for the Gordon Bell Special Prize for COVID-19
- Cover of Science first week of January!
- Portal is up and running
- Commercial cloud integration is functional with Azure, AWS
- ► Founding partner in the COVID-19 HPC Consortium
- ► First class of Fellowships underway.

THE TEAM - INSTITUTIONS

- Operations: TACC, Oden Institute, Ohio State University (MPI/Network support), Cornell (Online Training), Texas A&M (Campus Bridging)
- Science and Technology Drivers and Phase 2 Planning: Cal Tech, University of Chicago, Cornell, UC-Davis, Georgia Tech, Princeton, Stanford, Utah

THE HARDWARE (ORIGINAL) - COMPUTE

- The "main" compute system: 8,008 Dual-Socket Intel Xeon 8280 (Cascade Lake) nodes, 192GB of RAM, 56 cores, HDR Infiniband
 - Peak (39PF) and HPL (23PF) performance considers only these nodes
- ► FronteraRTX
- ► Frontera "Longhorn" subsystem
- Frontera NVDIMM 16 nodes with 6TB (each) of Intel Optane NVDIMM
 - DAOS testbed using these nodes basis of I/O 500 submission

EXPANSION

- Since we dedicated so much time last year to COVID work (that we can't get back).
- With gracious support from NSF and Dell, we are expanding the system to provide some extra cycles over the next few years.
 - Availability starting this week!
 - ► 396 additional compute nodes installed (now 8,404 total!)
 - ► Additional GPU time.

THE HARDWARE – STORAGE

- First Tier (for certain users): All-flash
 - DDN hardware
 - Currently mostly used in production with DDN IME software layer that will likely evolve to a
 pure flash filesystem.
 - ► 3PB capacity, 1.2TB/sec peak speed
- Second Tier: Home + 3 scratch filesystems
 - ► DDN Disk, ~50PB, ~300TB/sec
 - ► Users distributed among scratch1, scratch2, scratch3 (3 has highest BW).
- Third Tier: Sitewide "/work" filesystem (Stockyard)
- ► Fourth Tier(s):
 - Data publication/collaboration system (Corral)
 - Archive System (Ranch) encrypted and unencrypted options now available.

FRONTERA SYSTEM --- INFRASTRUCTURE

- Frontera consumes almost 6 Megawatts of Power at Peak
- Direct water cooling of primary compute racks (CoolIT/DellEMC)
- Oil immersion Cooling (GRC)
- ► Solar, Wind inputs (~30% today)

TACC Machine Room Chilled Water Plant

FRONTERA – RTX SUBSYSTEM

- ▶ 90 nodes
- ► 4 NVIDIA Quadro 5000 RTX cards per node
- ► 16 GB per card
- ► 11 TFlop single-precision per card
- Mineral oil-cooled immersion
- Additional GPU modules
- Accessed via rtx queues

LONGHORN

If you have used DOE's Sierra system at Livermore, it's that.

- ► 104 IBM Power9 nodes
- ► 4 NVIDIA V100 GPUs per node
- V100s connected with NVLINK on node
- ► 7 TFlop double-precision performance per card
- ► 14 TFlop single-precision performance per card
- ► 16 GB per card

A FOCUS ON LARGE SCALE

- Frontera is not *that* much bigger than Stampede2 (the physical footprint is actually smaller!).
- But it was built with the *largest* computational problems in mind.
- ► And we try to use it that way...

	Explore de la construction Teids of Science 1 296 Jobs 97% Utilization				FRONTERA 6 Fields of Science 331 Jobs 9% Utilization Explore More frontera >							
		Select a color to explo a field of science	bre				Select a color to et a field of scien	xplore ce				
Project Name		timestamp : Jul 17, 2020, 4:28:3	6 PM				timestamp : Jul 17, 2020, 4:	27:33 PM				
TG-ASC160051	All Stampede2 Research Projects (207)				All Frontera Research Projects (42)							
	Institution	Domain Science Je	bs Nodes	Project Description	I	Institution	Domain Science	Jobs	Nodes	Project Description		
	Texas Advanced Computing Center	COMPUTER AND INFORMATION SCIENCE AND 4 ENGINEERING (CISE)	4	View Description		California Institute of Technology	MATHEMATICAL AND PHYSICAL SCIENCES (MPS)	7	49	View Description		
1G-ASC160041	University of California, Santa Barbara	COMPUTER AND INFORMATION SCIENCE AND ENGINEERING (CISE)	16	View Description		University of Utah	MATHEMATICAL AND PHYSICAL SCIENCES (MPS)	2	256	View Description		
	Texas Advanced Computing Center	COMPUTER AND INFORMATION SCIENCE AND ENGINEERING (CISE)	1	View Description		Los Alamos National Laboratory	MATHEMATICAL AND PHYSICAL SCIENCES (MPS)	1	128	View Description		
	SUNY - Farmingdale State College	COMPUTER AND INFORMATION SCIENCE AND ENGINEERING (CISE)	5	View Description		University of Chicago	MATHEMATICAL AND PHYSICAL SCIENCES (MPS)	1	1	View Description		
	Department of Electrical and Computer Engineering	COMPUTER AND INFORMATION SCIENCE AND ENGINEERING (CISE)	1	View Description		Northwestern University	MATHEMATICAL AND PHYSICAL SCIENCES (MPS)	2	2	View Description		

A FOCUS ON LARGE SCALE

- Running the largest jobs is still something that takes some work.
- ▶ The **Texascale Days** are periods of time where we let teams push to new scales.
 - ► A focus on 4k/8k node jobs (200k/400k+ cores).
 - A period of exclusive access to debug and restart at large scale without having to requeue.
 - Using the whole system for the very largest problems.
- ► 11 teams have requested access for next week's period.
- (with the new expansion nodes, we hope to allow some small jobs to continue to run when the system is otherwise occupied with Texascale jobs).

OTHER MODES TO THINK ABOUT...

- Everyone here knows how to run batch jobs for the "normal system", but in addition to Texascale, remember some of our other "special" capabilities:
- ► Hardware:
 - Single precision and double precision GPU systems
 - Large memory/fast storage NVDIMM nodes (on their own, or in conjunction with other nodes).
 - ► Flash filesystem for the highest I/O demand jobs.
- ► Software:
 - API support for automated workflows
 - Cloud storage integration
 - ► Interactive jobs for the portal (including Jupyter, Visualization, etc.).
 - ► Reservations where QoS matters.

FRONTERA AS-A-SERVICE: EMBEDDING IN AUTOMATED WORKFLOWS: WORKFLOW SUPPORT IN HIGH ENERGY PHYSICS

The **Frontera Portal** is a webbased research platform that provides computational tools to manage, analyze, and understand critical data for research.

The Portal has cloud-based tools that support the analysis and integration of diverse data types.

FRONTERA BRIDGES TO THE COMMERCIAL CLOUD: NEW HIGH-RESOLUTION GLOBAL CLIMATE MODEL PREDICTS CHANGES TO EXTREME WEATHER, OCEAN CURRENTS

- ▶ Ping Chang, Texas A&M (collaborators at NCAR and QNLM).
- ► CESM, 25KM resolution
- One of the UN-supported HighResMIP simulations the official climate change forecasts.
- In addition to large simulations, also published the data results to Azure, where they do online analytics on ~550GB of data with the "PanGeo" Cloud platform.

ALLOCATIONS

- ▶ We've tried to streamline this process for you.
- Three Main Tracks:
 - Leadership Resource Allocations Ready to run at large scale, 250k-5M node-hours per year. (Currently 49 projects active)
 - Pathways Allocations Not yet at that scale, but scientific potential to get there, up to 200k node hours.
 - Large Scale Community Partnerships For Gateways, Community Codes, or large scientific collaborations, up to 3 years, 25k-1M hours per year.
- Also Startup, Educational, and Discretionary allocations

ALLOCATIONS		Leadership Resource Allocation (LRAC)	Pathways	Large-scale Community Partnerships (LSCP)	Totals
ALLOCATIONS	Requests	62	38	13	113
	Unique Pis	62	37	12	103
	Unique Orgs	45	31	12	69
	CPU SUs Requested	93,914,427	5,634,333	12,377,780	111,926,540
	CPU SUs Awarded	54,076,692	3,433,463	6,086,100	63,596,255
	GPU SUs Requested	2,545,684	439,665	1,385,600	4,370,949
► Three Main Tracks:	GPU SUs Awarded	613,684	146,975	160,000	920,659

1/27/21

24

- Leadership Resource Allocations Ready to run at large scale, 250k-5M node-hours per year. (Currently 49 projects active)
- Pathways Allocations Not yet at that scale, but scientific potential to get there, up to 200k node hours.
- ► Large Scale Community Partnerships For Gateways, Community Codes, or large scientific collaborations, up to 3 years, 25k-1M hours per year.
- Also Startup, Educational, and Discretionary allocations
- Allocations are widely advertised to the community through multiple channels, including an NSF DCL (NSF 20-018 was the most recent: <u>https://www.nsf.gov/pubs/2020/nsf20018/nsf20018.jsp</u>)

FIELDS OF SCIENCE			Nuclear Physics		Gravit Ph	atior ysics	nal A	۱Sc	onomi	ca s
► From last allocati	Extragalactic Astronomy and Cosmology	Materials Research	Chemistry	Mc Bio	lecular science Matte s Physi		idense 1atter hysics	sed er Climate cs Dynamics		e cs
on request			Physics	S Teri	olar restria –	Stell Astron and	ar omy Math	Neuro ence Biolog	sci Mag osph gy c	gnet heri
	Fluid, Particulate, and Hydraulic		Elementary Particle	Res	earch ch	Applie	emati cal Atmo	ati ter no ial	rfac Ea	cna :s art
	Systems	Biophysics	Physics		CS	Mat	C	Phy	/sic	

2020-2021 FRONTERA FELLOWS

Gabriele Bozzola University of Arizona

Field of Research: Physics & Astrophysics Maureen Kitheka State University of NY at Binghamton

Field of Research: Computational Chemistry Danat Issa Northwestern University

Field of Research: Astrophysics Jeane Camelo University of Central Florida

Field of Research: Coastal Engineering

Dubem Okafor University of Iowa

Field of Research: Elastoplastic wave propagation in impacting media

 1/27/21 27

2020 REU COHORT JUNE 8-AUGUST 7

Syema Ailia CS, Northeastern Illinois University

Teague Foster CS, Central Texas College

Carolyn Gonzalez CP & IS, Farmingdale State College

> Zach Steed CS, Hendrix College

Tyshawn Ferrell BIO, Albany State University

Regina-Mae Dominguez Math/CS, University of Guam

Jakerra Lance CIS/History, Washington & Jefferson College

Erin Searcy Math, Fort Valley State University

> Ricky Brown CIT, Broward College

Mariana Duarte CS, CA State University Monterey Bay

AI-HPC INFRASTRUCTURE PERFORMANCE (COURTESY SHANTENU JHA)

- Stage-1: ~20M SMILES/hour (Frontera)
 - Docking tasks have 2x fluctuations RCT load balances!
 - Scales to more 100,000 cores (i.e., 2000 nodes) on Frontera
- Stage-2: DeepDriveMD (Summit)
 - ► Summit: 20 nodes, 120 GPUs
 - Training time becomes increasingly challenging
 - 96% resource utilization although heterogeneous tasks are swapped
- Stages-3 and 4: ESMACS and TIES protocols use RCT individually but also are hybridized to efficiently use Summit nodes (6 GPUs + 42 CPU cores)
 - ► Efficiently executes >16K concurrent tasks on ≈ 2000 nodes (half of the entire Summit machine)

ALSO A GREAT EXAMPLE OF OUR EXTENDED SUPPORT

Although:

Re-writing a lot of bad Matlab, cleaning a lot of data, building web sites, making graphs.

a, boliaing web sites, king graphs.

PLEASE KEEP IN MIND, WE NEED TO HEAR ABOUT YOUR SCIENCE ACCOMPLISHMENTS!

- ► We (intentionally) set the bar low for any *mandatory* reporting.
- But we still love to hear about work you do with the system!
- In addition to all the slides I am about to steal from your talks, please send us slides, pictures, pointers to papers, news about new grants or findings whenever you can!

LEADERSHIP CLASS COMPUTING FACILITY

- In essence, our plan to transform the NSF and Open Science Computing Landscape from 2025-2035
- Construction set to begin 2023, Congress permitting.
- Datacenter expansion to 30MW, new and bigger systems, new approaches to storage and interactive, new buildings, staff expansion, more direct engagement in moving codes to new architectures
 - ▶ Relying on 50% software improvements to meet our targets.

SEE THE CALL FOR APPLICATION PARTNERS...

https://lccf.tacc.utexas.edu/application-partners/

1/28/21 36

