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Forces Driving and Resisting of Global Plate Motions

NNR, GPlates



GNSS velocities: Post-seismic deformations (years) following great earthquakes

[Sun et al., 2024]
[Yuzariyadi and Heki , 2021]
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[from SAGE/EarthScope]

Great Earthquakes occur on the 
Megathrust between plates

Stress cycling between megathrust & in-
coming plate



We want to better understand some of 
the why’s behind these & other 

observations
• What drives plate motions and how does slab pull 

work?
• What is the mechanical coupling between 

subduction zones based on plate motions?
• What are the trade-offs with the underlying factors 

which govern resistance to plate motions ?
• Is it possible to bridge the time span between 

seismogenic processes, megathrusts, and plate 
tectonics? 
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Forward Solution of Either 
Viscous Stokes or a Maxwell Material

fb and fe are the buoyancy and unrelaxed elastic stresses

. .



Rhea
• Weak formulation of incompressible Stokes system
• Discretization with adaptive finite hexahedral elements
• Order 2 or 3 for velocity, and corresponding stable discontinuous 

pressure elements of lower order
• AMR (p4est) Nonlinearity is treated with Newton’s method; plastic 

rheology uses Newton modification method to improve 
convergence

• Linearized Stokes solved with BFBT Schur complement, and 
geometric+algebraic multigrid-preconditioned GMRES

• Scales to millions of processors

[Burstedde et al. 2010, 2011; Rudi et al., 2015, 2017]
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HMG: Hybrid spectral–geometric–
algebraic multigrid

• Multigrid hierarchy of nested meshes is generated from an 
adaptively refined octree-based mesh via spectral–geometric 
coarsening

• Re-discretization of PDEs at coarser levels
• Parallel repartitioning of coarser meshes for load-balancing 

(crucial for AMR); sufficiently coarse meshes occupy only 
subsets of cores

• Coarse grid solver: AMG (from PETSc) invoked on small core 
counts

[Rudi et al., 2015, 2017]



Rhea Scaling on Frontera
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Science 1: Adjoint inversion: A PDE (nonlinear Stokes 
flow equations) constrained optimization

Efficient for non-linear viscosity and high-dimensional parameter space 
𝜂 = 𝜂(𝐸, 𝑛, 𝜎$ , Γ, . 𝑒𝑡𝑐) 

compute derivatives of objective functional 
(Gradient) Adjoint solve	𝑆(𝑣)
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Newton’s method, compute the second 
derivative of the objective function 
(Hessian)
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where 𝒗, 𝑞, 𝝈𝒗, and	�̇�𝒗 are ajoint velocity, 
pressure, stress, and strain rate.  
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Marginals from Global Inversions



Science 2: Replace the material in the shear 
zone with a Frictional Material, while the 

whole domain is visco-elastic

Fang, Gurnis & Lapusta, submitted [2024]

τy = C + µP (1− λ) , µ = µd + µs −µd
1+ V

Vr ef
,

Implemented in Underworld2,
a FEM package [Moresi, et al.] 



Long-term steady-state plate motion



Simultaneously: Slip Events and Plate Motions

Shear Zone:  Co-seismic Slip     and    Interseismic Velocity



Simultaneous Slip Events and Plate Motions



L=1,400 km, slip=10m and a down-dip length=50 km
Assuming elliptical slip distribution, we get

Mw  ~ 9 (Mo = 2 x 1022 N-m) every 300 years
All while Up ~ 5 cm/yr and ha ~ 1019 Pa-s emerging from the dynamics



To advance from earthquake cycles to dynamic 
plate motions, regionally to globally, we’re 

working to overcome computational 
challenges: 

1. Increase the scaling of the Solver
2. Update materials & equations

a. Visco-elastic system (Maxwell Model)
b. Frictional material inside fault zones

3. achieve ~10-meter resolution inside fault 
zones



1. Working on better scaling: Hiding point-to-
point communication during parallel matrix-

vector products
• Motivation: waiting time for input and output 

vectors during matvecs can make up a large 
portion of  computation time

• Right image: weak scaling series on Frontera for 
one Newton step (50 GMRES iterations)
• orange is maximum (over all processes) 

cumulative waiting time for input and output 
during matrix-vector products

• cyan is mean across processes
• waiting time increases to 20s — almost 10% of  

total computation time — and this is just one of 
several types of matvecs

• one reason: geometry and hardware create 
imbalance in input/output communication time

• new method to hide communication with 
computation during two phases of matrix-vector 
product



Computation block 1 Computation block 2

Comm. block 1 (input) Comm. block 2 (output)

Finish receive 
input

Finish 
receive output

Computation block 1 Computation block 2

Comm. block 1 (input) Comm. block 2 (output)

Finish receive 
input

Finish 
receive output

Old method: computation local to each processor split into two equally size blocks

New method: computation blocks are adaptively sized to hide communication



2b. Incorporation of frictional (velocity weakening) 
material in fault zones in Rhea with visco-elasticity

v

Plate

Weak zone



3. Currently achieving fault-zone resolutions of 75 
meters (150 m elements, 2nd order basis functions)



Summary
• We continue to advance Rhea, a finite element code with adaptive finite 

hexahedral elements with an advanced hybrid Algebraic-Geometric multi-
grid Solver.  

• We can solve forward & inversion problems using the Stokes equations 
with non-linear viscosity with yielding in a sphere

• On Frontera, we can achieve nearly ideal weak scaling on the full machine
• In global models with 1-km resolutions we demonstrated recovery of the 

non-linear constitutive parameters (a first) 
• In visco-elastic models, we demonstrate plate tectonic to great earthquake 

dynamics broadly consistent with observed plate motions, mantle 
viscosities, and megathrust slip (a first)

• We are advancing the scalability and material models in Rhea to compute 
cross-time scale models at regional to global scales.


