

(Nuclear Physics - Frontera LRAC allocation)

Vincent Andrieux ${ }^{2}$, Riccardo Longo ${ }^{2}$, Greg Mattson, Matthias
nature reviews physics

Image: Courtesy of Brookhaven National Laboratory. Cover design: Charlotte Gurr. Perdekamp ${ }^{2}$, April Townsend, Caroline Riedl ${ }^{1}$ (UIUC)

The proton and the strong nuclear force

- Proton $=$ nucleus of the hydrogen atom:
~ 1 femto meter $\left(10^{-15} \mathrm{~m}\right), \sim 10^{-27} \mathrm{~kg}$ or 938 MeV
- Consists of
- 3 valence quarks
- quark-antiquark pairs = sea quarks
- gluons mediating strong nuclear force

- Quantum Chromo Dynamic (QCD)
$=$ quantum field theory of the strong nuclear force
Besides electromagnetism, weak nuclear force \& gravity one of the 4 fundamental forces in nature.

Image from D. Dominguez, CERN courier May/June 2019 "The proton laid bare"

- Proton structure probed in scattering experiments, for example deep-inelastic proton-electron scattering
- Worldwide only few places: need accelerator laboratory like BNL, JLab, FNAL, SLAC, CERN, DESY, RIKEN

FRONTERA
Proton Quark Structure with COMPASS 2
C. Riedl (UIUC) - Frontera User Meeting, January 28, 2021

Proton "orbitals": from Q1HD to QGD

~ 1930's: Quantum Electro Dynamics QED
(the theory of the electromagnetic force between charged particles)
~ 2010's+: Quantum Chromo Dynamics QCD (the theory of the strong nuclear force between quarks) with proton polarization \& transverse degrees of freedom

Correlation between transverse spin of proton and transverse momentum of quarks is indicative of orbital angular momentum of quarks
in the proton

Proton: spin and mass... more complex than one thinks!

Proton spin budget \& internal dynamics:

$1 / 2 \hbar=$ "spin quarks + spin gluons + orbital angular momentum" plus add transverse spin \& transverse momentum

Scattering off the spin-
polarized proton -
COMPASS

quarks' orbital movement inside the proton creates left-right asymmetry A_{N}

Emergence of hadron mass: only a small portion of the mass of visible matter comes from the Higgs mechanism (bare quark masses). The bulk of proton mass is emergent $=$ created dynamically through the strong nuclear interaction.

Use different beam types (pions, kaons, anti-protons) COMPASS++/AMBER

bound quarks vs. free quarks

3-quark bound states (baryons) vs. 2-quark bound states (mesons)

GOMPASS @ CTHRN

CERN $=$ European Center for Nuclear Research

Tracking of high-energetic charged particles

Submissions to Frontera grid

1 node $=55$ raw files
1 job $\sim 8 \mathrm{k}$ files 1 submission $\sim 80 \mathrm{k}$ files

- On a given node, tasks are dispatched and terminated using an MPI-based code (pcp, https://github.com/wtsi-ssg/pcp)
- 10-job-limitation due to I/O restraints.
- Copy of output data from /tmp to /scratch at the end of a job has issues since late 2020 - higher occupancy of Frontera?

Trontera usage

Our group ran COMPASS data productions on NCSA's Blue Waters 2016-2019. We moved to Frontera in 2019:

- Experimental data productions for 2018 COMPASS data
- Data analysis of 2018 and 2015 data
- Detector efficiency maps for 2016 data (CPU intensive)
- Monte-Carlo studies for 2018 data
- Planned:
- close-to-final productions for 2018 data in nearest future
- more detector efficiency maps for 2018 \& 2016 data
- Monte-Carlo mass productions for 2018 data
- Detailed simulations for COMPASS++/AMBER

Frontera LRAC allocation - usage in kilo node hours

	unused	RD productions	detector maps	COMPASS simulations	AMBER simulations	physics analysis
actual	972	389	23	91	0	20
original plan		400	600	300	100	100
fulfilled	35%	97%	4%	30%	0%	20%

Much faster data productions than would be possible on other computing clusters

Minimization of systematic uncertainties due to the possibility of generating larger simulated samples and perform CPUintensive simulation studies (*)

Unprecedented precision determination of detector efficiencies

Team members:

UIUC: Vincent Andrieux (2), Riccardo Longo (2), Greg Mattson (3), Marco Meyer-Condo (2), Matthias Perdekamp (1), April Townsend (3), Caroline Riedl (1) JINR, Russia: Artem Petrosyan (3)
Academia Sinica, Taipei: Yu-Shiang Lian (3), Chia-Yu Hsieh (3)
Warsaw University, Poland: Anatolii Koval (3)
LIP, Portugal: Catarina Quintans (1)
Bonn University, Germany: Henri Pekeler (3)
(1) senior, (2) postdoc, (3) grad student

FRINTER
Proton Quark Structure with COMPASS 8
(*) multi-dimensional acceptance studies; pile-up; minimum bias trigger
C. Riedl (UIUC) - Frontera User Meeting, January 28, 2021

Summary: Unraveling Hadron Mass and Quark Structure with COMPASS \& COMLPASS++/AMBBR

- Frontera allows the COMPASS data to be analyzed in a fast way, at high precision and using novel approaches
- Frontera allows to simulate COMPASS++/AMBER data to prepare the best possible instrumentation
- Outlook: Frontera is essential to prepare the 2018 data for public presentation at 2021 spring conferences
- Education of students and young postdocs in petascale computing. Creation of reference data productions shared with dozens of researchers.

Project abstract: Hadrons are the bound states of quarks held together by gluons, particles mediating the strong nuclear force. The mass of the quark compounds cannot be understood by only summing its constituent masses. In addition a dynamic contribution introduced by the strong force has to be considered. The observed hadron mass hierarchy remains a mystery to date. Simulating detector setups on Frontera, we intend to determine an optimized set of instrumentation to experimentally address the hadron mass puzzle with the future COMPASS++/AMBER experiment to run at CERN after 2021. Using Frontera, we will also complete the 2015-2018 COMPASS measurement campaigns to unravel the transverse hadron structure in momentum and position space, and the origin of proton spin.

COMPASS data productions on Frontera

Backup workflow on Irontera

Montecarlo Chain

COMLPASS data transfer

- Transferred ~ 3 petabytes of raw COMPASS data from BW or CERN to Frontera, ~ 3 million files of ~ 1 GB
- Transfer of produced DSTs ($\sim 1 / 10$ reduction factor) back to CERN
- Using FTS3 (File Transfer System): bulk data mover created to globally distribute LHC data. FTS3 effectively uses globus-url-copy.

COMPASS raw data [TB]

1 data period $=2$ weeks of data taking

The Sivers effect

Hxaclusive reactions, hadron multiplicities \&s spectroscopy

Partial-Wave Analysis: Isobar Model
 $\pi^{-} \pi^{-} \pi^{+}$Final State
 COMPASS, PRD 95 (2017) 032004

QCD permits color-neutral configurations
beyond $q \bar{q}$

"Exotic" mesons

Blue Waters (NGSA) \& Irontera (IACC): history

machine	name of allocation	requested node hours	allocated node hours	used node hours	proposal submission
Blue Waters	exploratory	40k	40k	55k	Mar 2016
Blue Waters	campus 17	960k	200k	200k	Sep 2016
Blue Waters	PRAC-A	9,440k	9,440k	3,860k	Nov 2016*
Blue Waters	PRAC-B	9,440k	9,440k	9,440k	(together with PRAC-A)
Blue Waters	campus 19	1,000k	600k	588k	Oct 2018
Blue Waters	supplement (SP)	20,500k	0	n/a	Jan 2019*
Blue Waters	campus 20	5,000k	0	n/a	Sep 2019
Frontera	early science (SP)	1,200k **	450k	140k	Jan 2019 *
Frontera	LRAC (DCL)	1,500k	1,500k	528k	Jan 2020
Frontera	travel proposal	- (\$ only)	- (\$ only)	n/a	April 2020 *
XSEDE	startup	- (for grid transfer only)	- (for grid transfer only)	n/a	June 2020
Frontera	renewal	???	tba	tba	deadline Jan 15, 2021

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
2016			$\stackrel{\square 10}{ }$						$\stackrel{y}{\square}$		\Leftrightarrow	
2017												
2018										$\stackrel{y}{0}$		
2019	$\stackrel{y}{\square}$								0			
2020	\Leftrightarrow			\Leftrightarrow		\Leftrightarrow						
2021	\Leftrightarrow											

$\mathrm{SP}=\mathrm{NSF}$ supplemental proposal DCL $=$ NSF Dear Colleague Letter * = proposal submitted to NSF via Fastlane, otherwise submitted directly
to supercomputing institution ** requested COMPASS \& AMBER, got only COMPASS
1 Frontera nh is about 5 BW nh

FRINTERA

Proton Quark Structure with COMPASS 16
C. Riedl (UIUC) - Frontera User Meeting, January 28, 2021

