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Artificial self-folding water channel that reject ions and protons

A race is on to develop
robust, synthetic
channels reproducing or
exceeding performance
of aguapoins

. All water on Earth

e All Freshwater Sources

Howard Perman, USGS

w a .l. er i n I. ﬂ k e 5 q n d Ri V e rs Jack Cook, Adam Niema rl'_"u -

Data: lgor Shiklomanov, 1993

... a foldamer

Less than 1% of the total water is available for drinking Noworyta.
3.4M people die every year due to water related diseases /2\’875‘1” e 414:188-190,

11% of the world population lack the access to clean water



Artiticial seli-folding water channel that reject |ons andprotons

2019 allocation: First synthetic
iodide channel

Ultra-fast water transport
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Angewandte Chemie 59, 4806 (2020) Roy et al. Under review 1n Nature Nanotechnology 2021



Biological condensates

Liquia.aropLetf =
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grogical state seen in

Datients of neurodegenerative
diseases, most commonly

ALS

What is the molecular origin of
liquid-liquid phase separation?

What is the role of protein/RNA
in the phase behavior?

is the average life

| We use the Frontera-powered " ﬁﬁeﬁURE
What causes aggregation of  computational microscope to uncover F _32 B“_“UN Cp $250,000 UnL
the CondensateS? molecu|ar information 15t Eit?a: ; utthzf ptc:-mktt dmt

to slow or stop the
progression of ALS persan with ALS

https.//www. als.org/understanding-als/what-is-als



Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate

Spatial restraints applied
to structured domains

HK Model (Hummer lab)

J. Mol. Biol. 375:1416
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FUS protein sequence
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Han-Yi Chou

CG simulation of wild type CG simulation of R-to-K
FUS shows phase separation mutant FUS shows loss of
to form spherical condensates phase separation

Experimental
data

Wang et al. (2018), Cell
174, 688




Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate

Brute force simulations of phase diagram (Frontera GPUs) Phase diagram of FUS condensate

—— Binodal curve
---- Spinodal curve
*  Critical point
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Phase behavior of a
biological condensate
Is determined by the
behavior of just one

condensate molecule

Highlights: In i1solation!
TACC: Mysterious cellular droplets come into focus
From page of NSF

Single chain collapse theory
(Raos & Allegra, JPC 1996)

(Pappu Lab, BJ 2020) !E 7\#5..

Han-Yi Chou and Aleksei Aksimentiev, J. Phys. Chem. Lett. 11 4923 (2020)



All-atom simulations reveal internal structure of the condensates

Configurations from
CG simulations were

converted to all-atom |

representation

64 proteins
10 million atoms
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Simulations reveal a network of channels
formed by water inside the condensate

The channels are dynamically formed and
broken as the simulation progresses

Simulations suggest a mechanism for Temperature regulates

recruitment of molecules into the b?’[h abundance and
condensates size of the channels

H.-Y. Chou, S. Htun, K. Sarthak, D. Winogradoff, and A. Aksimentiev, To be published (2021



RNA modulates phase behavior of FUS condensates

Experiment: FUS-RNA condensates

Experiment. RNA affects thermodynamics show re-entrant phase behavior

and fluidity of condensate droplets
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RNA modulates phase behavior of FUS condensates

Simulations run on Frontera GPU

Probing the condensate viscosity by applying
time and position dependent shear force

Each system contains 1,728 proteins and
672 RNA molecules

T=292K

FUS ’
only
T =292 K
FUS
+
RNA
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Viscosity calculation will reveal how RNA
dispersed phase modulates the fluidity of the condensate

RNA inhibits exchange of biomolecules with



First all-atom structure of a complete packaged virus

Virus particle

<\

Protein capsid
Atomic structures are

available for several
viruses

Evelevich
(UIUC)

Genome

Partially resolved cryoEM density Genome of HK97-

~38,000 nucleotides
(long molecule ever
simulated)
~ 2.5M atoms

Gan, Lu, et al.
Structure 14.11
(2006): 1655-1665.

Experiments cannot resolve the genome

structure with atomic resolution ,
Complete solvated system contains ~ 26M atoms

Open questions: 1 us long simulation on Frontera is ~30 days on

- What is the 3D structure of the genome? 512 nodes; 15% boost in performance in 2020!
- How genome egjection is triggered and sustained? Not possible anywhere else

- Can genome be used as a drug target?



Packaging a model herpes-like virus

HK97 dsDNA virus infects
bacteria and is a model
system for pressurized dsDNA
viruses like herpes

Unpackaged viral genome = ey

Takes about 3 minutes to pack DNA
130 times longer than the capsid !

Fixed virus capsid

Movie: Carlos Bustamante Lab



Packaging a model herpes-like virus

Trajectories lasted >1 ms
with 40-fs timestep, requiring
~4 months of simulation

Packaging done with ARBD, our
own GPU-accelerated coarse-
grained BD package

bionano.physics.illinois.edu/arbd Frontera GPU-nodes rock!

I Packaged last

I Packaged first



Packaging a model herpes-like virus

With Frontera GPU, -
it was possible to | | :
package several
replicas
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Packaging a model herpes-like virus

With Frontera GPU, - Despite near-identical
it was possible to | -' simulation conditions,
package several packaged genome = 3

replicas “ . differed in each capsid 1
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Packaging a model herpes-like virus

With Frontera GPU, - Despite near-identical
it was possible to | -' simulation conditions,
package several packaged genome = 3

replicas “ . differed in each capsid 1
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' Different boundaries | = = 2
between first and last
packaged DNA
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Packaging a model herpes-like virus

With Frontera GPU, - Despite near-identical
it was possible to | -' simulation conditions,
package several packaged genome = 3

replicas “ . differed in each capsid 1

- . .

$

' Different boundaries | = = 2
between first and last
packaged DNA

Occasional protrusions
of DNA from one side to
another

I Packaged last

I Packaged first




Packaging a model herpes-like virus

With Frontera GPU, - Despite near-identical
it was possible to | -' simulation conditions,
package several packaged genome = 3

replicas “ . differed in each capsid 1

- . .

$

B Different boundaries | = = 2
between first and last
packaged DNA

Occasional protrusions
of DNA from one side to
another

I Packaged last

-~ -
Despite common organizing principle of
keeping DNA helices alighed, we did not
observed textbook spooling of genome

B I Packaged first




Packaged genome configurations are unique

Local helical axis of DNA, shown here, winds around the
packaging axis near the equator

Baseball-like order at surface, with two cupped halves Order in the same-direction at
having orthogonal order at the poles the poles

I Packaged first



Diverse patterns of topological defects in liquid crystal ordering of genome

Local helical axis of DNA, shown here, winds around the packaging axis

near the surface, but is more diverse in the interior

Branching defects

Relatively localized defects

I High alignment energy

Low alignment energy

& Defects

Loop of defects

&q‘ it , oy
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Mapping to all-atom model
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Splines are fit through the beads e
Kush Coshic

to facilitate “back-mapping” to
higher resolution

First, a simulation is performed
with a 1 bead/bp model

Next, a simulation is performed
with a 2 bead/bp model

Finally, atomic coordinates are
generated




Mapping to all-atom model

All-atom relaxation performed in
vacuum with grid-based capsid
and restraints applied to DNA

Splines are fit through the beads
to facilitate “back-mapping” to
higher resolution

Protein replaces the capsid

First, a simulation is performed botential

with a 1 bead/bp model

Solvent is added with ion
distribution from prior
equilibration with DNA

Next, a simulation is performed
with a 2 bead/bp model

Finally, atomic coordinates are

Restraints are slowly released
generated




Presence of DNA

DNA matters: Capsid structure and dynamics reduces capsid

fluctuations

Empty capsid DNA capsid
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alFeut view DNA in the inner Confined DNA remains fluid!

regions is more mobile
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Capsid confinement imprints structural features

Proteins defining

an edge DNA near capsid edges DNA helices protruding
into capsid vertices

Aligned at
angle to edge

Aligned with
edge ’

arr rin g e

=
)
L4

o Y.
y -

DNA near the
vertex/face DNA near

the edges defect



Multi- resolutlon ‘modeling of the nuclear pore complex (NPC)

Starting from experimental data Passive diffusion across NPC.
for the nuclear envelope (gray), ARBD run on Frontera GPUs.
and the NPC's scaffold (colors)

Cytoplasm

__250- :
nuclear . . < o %
envelope We built a coarse-grained model of the NPC o501 | _

» Nuclear envelope (von Appen, Nature, 2015), 2740 2760 2780 2960 2980 3000
Time (ns) Time (ns)

* FG-domains of nups (colors) with a CG force-field

nucleal basket

What mechanism governs transport One-bead-per-amino-acid
across the nuclear pore complex? Onck et al, BJ, 2014



Multi-resolution modeling of the nuclear pore complex (NPC)

CG conformations were mapped All-atom NPC + cytoplasm. Future direction: modeling viral
to all-atom resolution Run for 100ns on Frontera. passage through an NPC

Obtained a fully atomistic model
(15OIVI atoms)
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central channel from CG simulation Number of nodes N(residues)



What is both big and small? The 2D World!

=

Adnan

Choudhary

Andre Geim Ashok Keerthi Cees Dekker,
University of Manchester, UK TU Delft, Netherlads

2D nanoslit
theight 3.5 Nm [N
[ ]
1000 nm

,Graphene/hBN top layer

The nanoslit graphene device captures and freezes DNA topology,
potentially enabling precise characterization of its genome-scale structure

Advanced Materials, doi: 10.1002/adma.202007682 (2021)
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