PRIYA: A Cosmological Emulator with Black Holes

Simeon Bird
Dr. Martin Fernandez
Ming-Feng Ho
Mahdi Qezlou

arxiv:2306.05471

What are cosmological simulations?

The evolution of a statistically representative region of an artificial Universe from the first galaxies to today.

Initially uniform 20-1000 Mpc periodic box.

Forms structure, galaxies

Thanks to the ASTRID-CAMELS team

Cosmological Simulations: Why?

ASTRID: Single big model for galaxies

PRIYA: Cosmology

Multiple models with different parameters

Interpolate and compare to observations

Self-Gravity Dominated Dynamics

Dominated by self-gravity:

- Treat as many collisionless 'particles' (fluid elements).
- 10⁶ density contrast
- Hydro collisional particles
- Stars/black hole particles

Cosmological Parameter Suite

- We have: 3072³ and 1536³
- Illustris-TNG: 2500³
- ASTRID: 5500³

Frontera is very fast!
~10,000 SUs for 1536³
~100,000 SUs for 3072³
(Our Gadget is also fast)

Self-Gravity Dominated Dynamics

Adaptive timesteps so most particles are not active

Gravity is an FFT/tree method

(Gadget-4: Springel+ 2020)

Gravity tree only has active particles

Uses mass moments to avoid walking whole tree

Gas/Galaxy is Neighbour Tree

- Contains all particles
- Variable length branches
- Hard to predict

(Gadget-4: Springel+ 2020)

Dominates time, no-one has done it fast on GPUs

MPI/OpenMP

Shared memory (reduces communication)

Use dynamic OpenMP scheduling

Memory bandwidth limited, try to avoid loops over all particles

Node Load Balancing

Equal length Hilbert curve chunks Equal particle loads per node

Work balance was more equal but **slower**.

Shared memory means large amount per node

PRIYA Cosmology Suite

First big cosmology suite with galaxy formation! First cosmology suite with reionization!

Includes black hole mechanics

ASTRID galaxy model.

PRIYA Cosmology Suite

Simulations to model growth of gas structure

3 High fidelity: 3072³

48 Low fidelity: 1536³

120 Mpc/h box

9 emulated parameters

PRIYA for Lyman-α forest Inference

Absorption from neutral hydrogen in quasar Clustering tells you about cosmology

Emulate a Summary Statistic

Power spectrum of absorption along line of sight

to averaged quasar

$$v = H(z) (a r)$$

 $k = 0.001 \text{ s/km} \sim 0.1 \text{ h/Mpc}$

 $k = 0.02 \text{ s/km} \sim 2 \text{ h/Mpc}$

Simulation Interpolation

- For inference need simulation output for all cosmologies
- Gaussian Process interpolation using ~50 simulations
- Interpolation needs 50 large simulations

Multi-Fidelity Emulation

Combine simulations at **different** resolutions.

- Low resolution for parameter space exploration
- Correct with high resolution.
- Parameter-dependent correction function.

Multi-Fidelity Emulation

Correction function:

f is the GP at fidelity t

$$f_t(k, x) = \rho_{t,j} f_{t-1}(x, k) + \delta_t(x, k),$$

Optimize for rho and delta

1 HR GP, 1 LR GP, correction

Emulation is 1% accurate! Multi-fidelity leave-one-out is missing ½ simulations

3 High fidelity: 3072³

48 Low fidelity: 1536³

120 Mpc/h box

Likelihood function

Posterior constraints simulated data

Included:

- Metals
- DLAs
- Temperature data

We ran chains!

Preliminary Results

Probable data Systematic at z = 2.2,2.4

Inconsistent with CMB measurements

Implications: Neutrino Mass

Neutrinos: Neutral massive but light particles

Last unknown standard model parameter

Connected to matter / antimatter asymmetry

Kamiokande says:

$$\Sigma m_v > 0.06 \text{ eV}$$

Relic Neutrino Background

Neutrinos are non-clustering dark matter

Total clustering sets upper limit on non-clustering fraction.

Previously from this data 'tightest constraints':

$$\Sigma m_v < 0.11 \text{ eV}$$

Hard to measure this on earth

Cosmology Implications

Amplitude and slope of the power spectrum of matter structures

Slope now in agreement with other measurements

Total neutrino mass scale: now prefers non-zero mass

Conclusions 2306.05471 & soon

PRIYA suite and multi-fidelity emulation

Reanalysis of eBOSS Lyman alpha data

First hydro-based cosmology suite with big

Maybe a neutrino mass?

Latin Hypercube Selection

Circle: HF. Cross: LF.

Parameters:

 $A_p n_p$ - cosmology $z_i z_f \alpha_q$ - helium reionization z_{HI} - hydrogen reionization $\Omega_M h^2$ - Growth rate

```
0.8
1.2e-09
0.65
```

First with Reionization Models

- Patchy hydrogen reionization model
- Patchy helium \sim 30 Mpc bubbles z \sim 3.8 2.8
- Match gas temperature history

Reionization Model

Each point in space has reionization redshift.

1 Mpc/h cubes correlated with over-density

from FastPM

 High density early low density late

Helium Reionization

- Each blue star is a quasar, randomly placed in a halo
- Each red bubble is a 30 Mpc ionized region
- Placed to match an ionization history

Gaussian Process on Simulations

- Bayesian function interpolation, which computes probability distribution of f(x) conditional on input set.
- Magic in kernel function: how correlation between function depends on parameter distance.

Left: Prior on function

Right: Posterior

Rasmussen & Williams (GPML)

Gaussian Processes

- Magic in: Kernel function
- Describes how correlation between function values depends on parameter distance.
- Kernel is squared exponential:

$$k(x_i, x_j) = \exp\left(-\frac{1}{2}||x_i - x_j||^2/l^2\right)$$

L is estimated from the samples, for every parameter

Like Richardson Extrapolation

To correct low resolution: power spectra corrected at a single cosmology to higher resolution

$$R_{Corr}(k) = P_{high}(k, cos = C) / P_{low}(k, cos = C)$$

$$P(k, cos) = P_{low}(k, cos) R_{corr}(k)$$

Multi-fidelity is a generalisation: R_{Corr} is a GP.

Multi-Fidelity Emulation

Fidelities 0 (low resolution)
1 (high resolution)

f_t=P(k) is the GP at fidelity t

$$f_t(k, x) = \rho_{t,j} f_{t-1}(x, k) + \delta_t(x, k),$$

Train rho and delta

Emulator (single-fidelity) Experimental design: space-filling Latin Hypercube **Extract quantity of interest:** power spectrum Statistical modelling: interpolation, Gaussian process Testing: calibrate the emulator

Inference:

input observations

Multi-Fidelity Emulation

Works because of halo model

2-halo term learned by low fidelity simulations.

Resolution correction is 1 halo term: not much cosmology dependence.

