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A Definition of Hypersonics

X-51 Waverider (Mach 5) HTV-2 (Mach 20+) Stardust (Mach 43)

SCRAMJET Tactical Boost Glide Reentry Capsule

Mach #: M =
velocity

speed of sound
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Modeling Challenges
High-Temperature 
Materials
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Aerosciences



Hypersonics:  An HPC Grand Challenge

• Multiscale in space: 10-9 to 101 m
• Multiscale in time: 10-10 to 102 s
• Domain-specific codes (MD, DSMC, FEM, CFD, rad, E&M)
• Different codes map differently onto heterogeneous hardware
• Inter-code orchestration
• UQ & MDO need multiple realizations
• (Didn’t even discuss I/O…)



Example Mach 15 Flow Field
5-species air, 100 kft, 800 Frontera nodes
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Aerosciences: Key Understanding Gap
• Extracted from Boeing and Lockheed pre-PDR designs of Mach 5-7 

reusable vehicle (AFRL-RB-WP-TR-2010-3068, -3069, and summarized by 
Eason et al., AIAA Paper 2013-1747).

• “Can only approximate the acoustic 
environment …”

• “Identification of critical thermal, 
mechanical, and acoustic loads …”

• “Predicting aero-elastic characteristics 
of thin metallic structure at high T …”

Shock impingement

TBL loadsPropulsion loads

Darpa

TransitionTransition: see Dettenrieder & Bodony, TCFD, 2021



Case Study 1

X-15-2 carrying pilon-mounted dummy scramjet
Credit: USAF

Unanticipated shock-shock interaction caused loss
of “engine”, severe damage to pilon (Watts, 1968)

Edney Type IV shock-shock interaction
leads to localized intense impinging jet

(Chettles et al., 2005)



Case Study 2
• SHEFEX-I (Sharp Edge Flight Experiment) by DLR in 2005
• Purpose: test flat-sided design and TPS concepts for re-entry vehicles

8

Rear section of SHEFEX-I during decent.  Circles
indicate control surface LE deformation due to FTSI.

vel: 6350 km/hr
alt: 17.8 km

Launch from
Andoya, Norway

Vehicle nose carried primary experiment
of flat paneled hypersonic structure

All figures credit: Longo et al., 2006



Frontera: Study FSI of a 35 deg ramp 
Propulsion LoadsTBL Loads

Transition Shock Impingement



Goal: Useful Reduced-Order Model
• Fluid prediction dominates cost of FTSI DNS
• Also represents the biggest unknown in OEM 

design and analysis
• Developed a multiple-shock version of local 

Piston theory (Sullivan et al., AIAAJ, 2020)
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High-Speed FTSI: Shock on Control Surface

• Flow conditions:
– Mach 6
– T0 = 522 K
– P0 = 3.2 MPa
– unit Re = 23.6 x 106 / m

• Model conditions
– 4140 stainless steel plate
– milled compliant section
– 0.032” tested

Credit: Tom Whalen and Stuart Laurence (UMD)

• Test time ~ 5 sec
• Tunnel started with model retracted
• Model raised in ~ 3 sec
• Data collected for ~ 5 sec

Sullivan et al., AIAA J, 2020 Anecdote: Wanted to test 0.016” but NASA safety wouldn’t
allow it for fear of tunnel unstart.



Computational Approach

⇢C⇥̇+r · q = 0

Finite difference SBP-SAT + WENO
Generalized, deformable coords.

Quadratic FE
Multiplicative Split

Newmark-Beta

Quadratic FE
Crank-Nicolson

Coupling:
• C++ MPI layer
• Multirate time advancement

Material model:
• Isotropic
• Compressible Neo-Hookean
• Temp. dependent material props. 

Sullivan et al., AIAA J, 2020



Computational Infrastructure
• Additional Capabilities
– Multi-rate time integration
– Structured overset

• Geometric flexibility
• Deformable / moving

– Different grids = different physics models
– Cantera-informed chemistry 

(Prometheus)
– Multiphysics linear operator (global 

modes, input/output, resolvent analysis)

• Code details
– C++ infrastructure
– Physics kernels – extensible
– MPI + OpenMP (≥ 4.5)
– GPU offloading via OpenMP

• Thermo-mechanical
– Built on MFEM
– Includes TPS models, radiation, …



Performance on Frontera

4 MPI ranks/node
(no I/O)

Strong scaling: 4B points

2 MPI ranks/node
(with I/O)



Reattachment (DNS)

Reattachment (Expt)



Return to NASA LaRC M6 Tunnel Details
• Tunnel walls are flat and radiate sound
• Sound impacts model:
– Modifies flat plate boundary layer transition
– Changes FTSI
– No diagnostics to suggest where BL transitions

• Resort to including acoustic field
in the 3D calculations

• Rufer & Berridge (AIAA 2012-3262)



Model NASA LaRC M6 Tunnel Noise
• Take measured PSD from Kulite / PCB rake
• Apply Tam et al. PSD discretization
• Apply inverse pitot-tube transfer function 

(Chaudhry & Candler)
• Assume plane wave field:



3D DNS with NASA LaRC M6 Tunnel Noise

• 6 Billion grid points
• Running on NSF Frontera with 1024 nodes (57K cores)



Summary

• There are many FTSI scenarios that are critical for hypersonic 
flight

• Historical use of noisy ground tunnels may impact our FTSI 
models at flight conditions

• Fundamental investigations coupled with good modeling (cf. 
McNamara) and recent experiments (cf. AEDC) are going to 
impact our understanding of FTSI at high Mach numbers

• Much work is needed on “basic” flows
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