Using Frontera for the Direct Numerical Simulation of Hypersonic Flows

Daniel J. Bodony, Bryson Sullivan, and Fabian Dettenrieder Aerospace Engineering

January 28, 2021

Dr. Sarah Popkin FA9550-18-1-0035

A Definition of Hypersonics

Mach #:
$$M = \frac{\text{velocity}}{\text{speed of sound}}$$

Modeling Challenges

Γ

Hypersonics: An HPC Grand Challenge

- Multiscale in space: 10⁻⁹ to 10¹ m
- Multiscale in time: 10^{-10} to 10^2 s
- Domain-specific codes (MD, DSMC, FEM, CFD, rad, E&M)
- Different codes map differently onto heterogeneous hardware
- Inter-code orchestration
- UQ & MDO need multiple realizations
- (Didn't even discuss I/O...)

Example Mach 15 Flow Field

5-species air, 100 kft, 800 Frontera nodes

Aerosciences: Key Understanding Gap

- Extracted from Boeing and Lockheed pre-PDR designs of Mach 5-7 reusable vehicle (AFRL-RB-WP-TR-2010-3068, -3069, and summarized by Eason et al., AIAA Paper 2013-1747).
- "Can only approximate the acoustic environment ..."
- "Identification of critical thermal, mechanical, and acoustic loads ..."
- "Predicting aero-elastic characteristics of thin metallic structure at high T ..."

Case Study 1

Unanticipated shock-shock interaction caused loss of "engine", severe damage to pilon (Watts, 1968)

X-15-2 carrying pilon-mounted dummy scramjet Credit: USAF Edney Type IV shock-shock interaction leads to localized intense impinging jet (Chettles et al., 2005)

Case Study 2

- SHEFEX-I (Sharp Edge Flight Experiment) by DLR in 2005
- Purpose: test flat-sided design and TPS concepts for re-entry vehicles

Launch from Andoya, Norway

Vehicle nose carried primary experiment of flat paneled hypersonic structure

Rear section of SHEFEX-I during decent. Circles indicate control surface LE deformation due to FTSI.

All figures credit: Longo et al., 2006

Frontera: Study FSI of a 35 deg ramp

Transition

Shock Impingement

Goal: Useful Reduced-Order Model

- Fluid prediction dominates cost of FTSI DNS
- Also represents the biggest unknown in OEM design and analysis
- Developed a multiple-shock version of local Piston theory (Sullivan et al., AIAAJ, 2020)

10

High-Speed FTSI: Shock on Control Surface

- Flow conditions:
 - Mach 6
 - $T_0 = 522 \text{ K}$
 - $P_0 = 3.2 \text{ MPa}$
 - unit Re = 23.6×10^6 / m
- Model conditions
 - 4140 stainless steel plate
 - milled compliant section
 - 0.032" tested

Credit: Tom Whalen and Stuart Laurence (UMD)

- Test time ~ 5 sec
 - Tunnel started with model retracted
 - Model raised in ~ 3 sec
 - Data collected for ~ 5 sec

Anecdote: Wanted to test 0.016" but NASA safety wouldn't allow it for fear of tunnel unstart.

Computational Approach

Multiplicative Split

Newmark-Beta

Quadratic FE Crank-Nicolson

۲

•

۲

٠

•

Computational Infrastructure

- Additional Capabilities
 - Multi-rate time integration
 - Structured overset
 - Geometric flexibility
 - Deformable / moving
 - Different grids = different physics models
 - Cantera-informed chemistry (Prometheus)
 - Multiphysics linear operator (global modes, input/output, resolvent analysis)

- Code details
 - C++ infrastructure
 - Physics kernels extensible
 - MPI + OpenMP (≥ 4.5)
 - GPU offloading via OpenMP
- Thermo-mechanical
 - Built on MFEM
 - Includes TPS models, radiation, ...

Performance on Frontera

Γ

Return to NASA LaRC M6 Tunnel Details

- Tunnel walls are flat and radiate sound
- Sound impacts model:
 - Modifies flat plate boundary layer transition
 - Changes FTSI
 - No diagnostics to suggest where BL transitions
- Resort to including acoustic field in the 3D calculations
- Rufer & Berridge (AIAA 2012-3262)

Model NASA LaRC M6 Tunnel Noise

- Take measured PSD from Kulite / PCB rake
- Apply Tam et al. PSD discretization
- Apply inverse pitot-tube transfer function (Chaudhry & Candler)
- Assume plane wave field:

$$egin{aligned} &
ho'(oldsymbol{x},t) = rac{1}{c_\infty^2}
ho'(oldsymbol{x},t) = rac{1}{\gamma} \sum_{j=1}^{N_w} \hat{
ho}_j e^{i(oldsymbol{k}_j\cdotoldsymbol{x}-\omega_jt+ ilde{\phi}_j)} \ &oldsymbol{u}'(oldsymbol{x},t) = rac{c_\infty}{\gamma} \sum_{j=1}^{N_w} \hat{
ho}_j rac{oldsymbol{k}_j}{\|oldsymbol{k}_j\|} e^{i(oldsymbol{k}_j\cdotoldsymbol{x}-\omega_jt+ ilde{\phi}_j)} \end{aligned}$$

3D DNS with NASA LaRC M6 Tunnel Noise

- 6 Billion grid points
- Running on NSF Frontera with 1024 nodes (57K cores)

- There are many FTSI scenarios that are critical for hypersonic flight
- Historical use of noisy ground tunnels may impact our FTSI models at flight conditions
- Fundamental investigations coupled with good modeling (cf. McNamara) and recent experiments (cf. AEDC) are going to impact our understanding of FTSI at high Mach numbers
- Much work is needed on "basic" flows

Contact Information

Daniel J. Bodony Blue Waters Professor Department of Aerospace Engineering Department of Mechanical Science and Engineering (by courtesy) 306C Talbot Labs 104 S. Wright St. Urbana, IL 61801 T: (217) 244-3844 bodony@illinois.edu http://acoustics.ae.illinois.edu

####