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NAMD: Scalable Molecular Dynamics
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• Code written in C++ with  
Charm++ parallel objects

- CUDA for NVIDIA devices

- HIP (via Hipify) for AMD devices

- SYCL/oneAPI for Intel devices


• Simulate movements of 
biomolecules over time


• Enable parallel scaling

- Large systems (single-copy scaling) 
- Enhanced sampling (multi-copy scaling) 


• Over 44,000 registered users, 
over 20,000 citations Investigations of coronavirus (SARS-CoV-2) spike dynamics.

Credit: Tianle Chen, Karanpal Kapoor, Emad Tajkhorshid (UIUC).
Simulations with NAMD, movie created with VMD.Phillips, et al. J. Comput. Chem. 26, 1781-1802 (2005)

Phillips, et al. J. Chem. Phys. 153, 044130 (2020)

https://www.ks.uiuc.edu/Research/namd/

https://www.ks.uiuc.edu/Research/namd/
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Molecular Dynamics Simulation
Integrate Newton’s equations of motion:

Most computationally intensive part

Integrate for millions of time steps



NAMD Parallelizes Domain and Interaction Space
• Decompose atoms into equal volume patches


• Calculate short-range pairwise forces between atoms, treated 
as interactions between neighboring patches


• Decompose patch-patch interactions into compute objects


• Moving atoms: update spatial decomposition by migrating 
atoms between adjacent patches


• Load balancing: update work decomposition by migrating 
compute objects to keep processors consistently occupied


• Available parallelism: across each time step force calculation, 
but numerical integration steps must be calculated in sequence 
(making MD highly sensitive to latency)
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Spatial decomposition of  
atoms into patches

Work decomposition of  
patch-patch interactions 

into migratable compute objects



NAMD GPU-offload Approach for Multi-node Simulation
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Charge spreading

Force interpolation

Offload force compute to GPU

Must aggregate positions

Patches

Patches

Compute forces
for next time step



Outline

• NAMD 3.0 performance improvements

- CPU optimizations via new AVX-512 kernels


- New GPU-resident mode for single-GPU and single-node, multi-GPU simulation


• Science projects showcasing these performance improvements

- Rommie Amaro's Lab (UCSD) studying SARS-CoV-2


- Emad Tajkhorshid's Lab (UIUC) studying EAATs (Excitatory Amino Acid Transporters)


• Advantages running NAMD on Grace Hopper
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AVX-512 Kernels Boost NAMD Performance
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Benchmarks show
1.8x performance boost

Porting of CUDA tiles kernels for
non-bonded force (Mike Brown)

Amaro Lab (UCSD) benefitted for
their coronavirus spike simulations

https://www.hpcwire.com/2020/08/12/intel-speeds-namd-by-1-8x-saves-xeon-processor-users-millions-of-compute-hours/

Initially released in NAMD 2.15alpha

Also runs on AMD Zen 4

https://www.hpcwire.com/2020/08/12/intel-speeds-namd-by-1-8x-saves-xeon-processor-users-millions-of-compute-hours/


New GPU-resident Approach

Move integrator to GPU and maintain data between time steps
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Calculate forces

Integrate atom 
positions

Aggregate 
position data, 
copy to GPU

Integrate atom 
positions

Calculate forces

Aggregate 
position data, 
copy to GPU

Stream 
forces back 

to CPU

CPU

GPU

GPU-offload

CPU

GPU

Integrate atom 
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force 
to SOA form

Integrate atom 
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force 
to SOA form

Integrate atom 
positions

GPU-resident
(manages GPU kernels)



Adapting Parallel Scaling to GPU-resident Approach

Some communication required: multicasts and reductions
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• Update atom positions in each patch 
during integration


• Perform position multicast into compute 
objects


• Compute new forces


• Perform force reduction back to patches


• GPUs need load-store memory access 
between different devices within every 
time step, with data sizes on the order of 
8KB per access

Integration

Integration

Position Multicast

Force Eval

Force Reduction

See past NVIDIA GTC talks for more details:  
s31529, s41378, s51693



A100 

Single GPU Performance Improvements
NVE simulation (constant energy):
• DHFR: AMBER-like force field (9 Å cutoff), HMR with 4 fs time step, PME, rigid bond constraints, "margin" 2 Å, two-away-Z.
• ApoA1: CHARMM force field (12 Å cutoff), multiple time stepping with 2 fs time step and 4 fs PME, rigid bond constraints.
• STMV: CHARMM force field (12 Å cutoff), multiple time stepping with 2 fs time step and 4 fs PME, rigid bond constraints.
• Spike ACE-2: CHARMM force field (12 Å cutoff), multiple time stepping with 2 fs time step and 4 fs PME, rigid bond constraints.
• Each measurement calculates the average ns/day running dynamics for 3 minutes of wall clock time.

Platform details:
• 1 GPU and CPU cores from HGX-A100 (4x A100-SXM4-40GB, NVLink, 2x AMD EPYC 74F3 (Milan) 24-core processor)
• GPU-offload performs best for each system using all 48 cores.
• GPU-resident: DHFR — 2 cores, ApoA1 — 4 cores, STMV — 8 cores, Spike ACE-2 — 8 cores.

GPU-resident 
ns/day

GPU-offload 
ns/day speedup

DHFR (23.6k) 1174 330.4 3.55x

ApoA1 (92.2k) 190.4 63.88 2.98x

STMV (1.06M) 16.64 7.547 2.20x

Spike ACE-2 (8.56M) 1.875 0.7711 2.43x
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Comparing GPU-resident with GPU-offload

STMV 
1.06M atoms 

Simulation details:
NVE, CHARMM force field, cutoff distance 12 Å,
MTS with 2 fs time step and 4 fs PME, rigid bond constraints.
GPU-resident mode sets performance tuning parameter 
“margin” to 4 Å for GPU-resident version, with PME PEs set 
to 8, 7, 5, 1 for numbers of GPUs 1, 2, 4, and 8, respectively. 
GPU-offload mode scales CPU core usage, 8 cores per GPU.

DGX-A100 



NAMD Simulating SARS-CoV-2 on Frontera and Summit

12

(A) Virion, (B) Spike, (C) Glycan shield conformations
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Scaling performance:
• ~305M atom virion
• ~8.5M atom spike

Collaboration with Amaro Lab at UCSD, images rendered by VMD
Winner of Gordon Bell Special Prize at SC20, project involved overall 1.13 Zettaflops of NAMD simulation 

strong scaling 
51% efficiency

Casalino, et al. bioRxiv (2020) https://doi.org/10.1101/2020.11.19.390187

https://doi.org/10.1101/2020.11.19.390187


NAMD Simulating Aerosolized SARS-CoV-2 on Summit
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Collaboration with Amaro Lab at UCSD, images rendered by VMD
Finalist for Gordon Bell Special Prize at SC21

Dommer, et al. bioRxiv (2021) https://doi.org/10.1101/2021.11.12.468428
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A Case Study: Excitatory Amino Acid Transporters (EAATs) 

• EAATs regulate concentration of 
glutamate in synaptic cleft of our neural 
cell. 


• Dysregulation of EAATs  Parkinson, 
Alzheimer, depression


• EAATs transport 1glutamate, 3 Na+, H+, and 
counter-transport K+ in a complex process!


• We study transport cycle through 
molecular dynamics simulations!

→

Synaptic cleft

(Glial cells)
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Work of Ashkan Fakharzadeh from Tajkhorshid Lab



Simulations of dEAAT2
• Regular MD simulations were performed to study local 

dynamics of dEAAT2

• Advance features such as free energy perturbation and 
constant pH were used to study ion binding sequence. 
 
Constant pH MD: A series of cycles composed of an MD and 
nonequilibrium MD/Monte Carlo steps  
 

Simulation details: 

7-8 replica (pH 3.4, 4.4, …, 9.4 )

Performed 4000 cycles of 10000 steps MD and 40000 steps nonequilibrium MD/MC

Upper bound of simulation time: 50ns 

Simulation details: 

Crystal structure embedded in an explicit glia-like membrane

Solvated with TIP3P water molecules. Neutralized with NaCl salt  with an added 150 mM 
salt concentration.

Simulation size: ~200K atoms, box size: 123x123x117 

Temperature 310°K 
Simulations were performed in NAMD3 with CHARMM36m force field

Electrostatic interactions: particle mesh Ewald method

Integration: 2 fs time step

Minimized and equilibrated for 10ns with backbone constrained; 200ns unconstrained 
equilibrium MD; repeated 1-3 times


 Å3
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Performance of dEAAT2 Simulations on Frontera
• Run command examples:

• Single GPU node:

ibrun namd3 +ppn 16 +pemap 0-7,16-23 +pmepes 7 
+devices 0,1 CONFIG_FILE > LOG_FILE  
 
7 PEs per PME device, and 9 PEs per non-PME device 

• Multi-copy Multi-GPU:

charmrun ++n NUM_REPLICA ++mpiexec ++remote-shell 
ibrun namd3 ++ppn 7 +pemap 1-7,17-23,9-15,25-31 
+commap 0,16,8,24 +replicas NUM_REPLICA 
+devicesperreplica 1 CONFIG_FILE +stdout 
LOG_FILE.%d  

• Multi-copy Multi-CPU:

ibrun namd3 +ppn 13 +pemap 4-55:2,5-55:2 +commap 
0,2,1,3 CONFIG_FILE +replicas NUM_REPLICA +stdout 
LOG_FILE.%d
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Performances are per replica. 

For constant pH, the performance is the average of MD and 
nonequilibrium MD/MC.

Each GPU node can run up to 4 replicas with cost of 3 SU/hr.  
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• Enables fast, low-latency communication between CPU and 
GPU via NVLink


• Provides memory coherency between host and device


• Has much higher CPU memory bandwidth per GPU than x86


• Greatly reduces CPU-side bottlenecks, such as using Colvars 
with GPU-resident simulation
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https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/
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Sauer, Trebesch, et al. eLife (2020) https://doi.org/10.7554/eLife.61350

LaINDY ~200k atom simulation 
Uses several collective variables:


spin, distance, orientation

NAMD Simulations on Grace Hopper

Preparing for Vista

https://developer.nvidia.com/blog/nvidia-grace-hopper-superchip-architecture-in-depth/
https://doi.org/10.7554/eLife.61350
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