2024 FRONTERA USER MEETING AUSTIN, TX

Stabilizing Room-Temperature Superconductivity in Hydrides by Nonequilibrium Driving

8/6/2024

Chendi Xie Principal Investigator: Dr. Yao Wang Emory University / Clemson University

Superconductivity

- Most important quantum phases
 - Non-resistance
 - Diamagnetism
- Broad applications
 - Dissipation-less power transmission
 - Quantum computing (qubits)
 - Controlled nuclear fusion
 - Public transportation

Roadmap of Superconductors

• 1911 : Superconductivity (SC) first observed in Hg

Equilibrium Band Structure of LaH₁₀

First principles calculation

- Density functional theory (DFT) calculation
- Wannier tight-binding model simulation
 - Band Structure Benchmark
 - Equilibrium DOS calculation

WANNIER90

$$\mathcal{H} = \sum_{\substack{jl\\\alpha\beta\sigma}} H_{jl}^{(\alpha\beta)} c_{l\beta\sigma}^{\dagger} c_{j\alpha\sigma} = \sum_{\substack{j\\\alpha\sigma}} E_{\alpha} c_{j\alpha\sigma}^{\dagger} c_{j\alpha\sigma} + \sum_{\substack{jl\\\alpha\beta\sigma}} t_{jl}^{(\alpha\beta)} (c_{l\beta\sigma}^{\dagger} c_{j\alpha\sigma} + h.c.)$$

Site energy term

Hopping energy term

Electron-Phonon Coupling Calculations

Our T_c : 258 K, accepted T_c : 265 K^[2]

[1] Lee et al. npj Comput. Mater. 9, 156 (2023) [2] Wang et al. Phys. Rev. B 100, 060502(R) (2023)

Nonequilibrium Band Evolution of LaH₁₀

- Nonequilibrium electron structures of LaH₁₀
 - Approximations for time-dependent Hamiltonian
 - Diagonalize Floquet Hamiltonians \mathcal{H}_F for band structure
 - Evolution of nonequilibrium DOS under different pump strengths

Nonequilibrium Electron-Phonon Coupling of LaH₁₀

Electron-phonon coupling and T_c calculations

- Nonequilibrium el-ph coupling matrix elements \tilde{g}
- Nonequilibrium Eliashberg functional $\alpha^2 \tilde{F}(\omega)$
- El-ph coupling strength $\tilde{\lambda}$ & transition temperature T_c

Xie et al. arXiv: 2312.12706, under review of Nature Communications (2024).

phonon

Summary

A dynamic approach to increase *T_c* in hydrides

- Light-induced room temperature superconductivity
- Elevated DOS and electron-phonon coupling contribute to T_c increase
- Pressure dependence & polarization analysis (not shown in presentation)

Acknowledgements

- Collaborators
 - Dr. Wei-Chih Chen @ Clemson University
 - Haoran Yan @ Emory University
 - Adam D. Smith @ University of Alabama at Birmingham
- Computation Resources
 - Frontera LRAC: DMR21001
 Electron-Phonon Coupling in Correlated Quantum Materials

Thanks for your attention!

