Multiscale Analysis of Nanomechanics

Amir Taqieddin and Prof. Narayana Aluru Mechanical Science & Engineering Department University of Illinois at Urbana-Champaign

- Part I: Overview of calculations on Frontera
- Part II: Mechanically deformed graphene-based structures
- **Part III: Water on functionalized graphene**
- Conclusion

Overview

Overview

Mechanically deformed graphene-based structures

Biological detection

DNA detection is important for disease diagnosis and environmental monitoring.

- A fast, label-free and inexpensive methods are needed.
- One big challenge: most of disease biomarkers are at ultra-low concentrations.
- This technology is about 10,000 times more sensitive than prior biosensors.

Dirac point shift can be obtained from the change in carrier charge density of graphene.

□ The threshold gate-voltage (Dirac point) shift is larger for the crumpled graphene indicating aM detection (18 molecules).

U We extended this technology to detect COVID-19.

Hwang, Heiranian, Kim, You, Leem, Taqieddin, Faramarzi, Jing, Park, van der Zande, Nam, Aluru & Bashir. Nature Communication, 11 (1), 1-11 (2020).

DNA .

 $\setminus \Lambda$

Graphene

□ We worked on explain the experimental observation using *ab initio* and MD simulations.

□ In presence of DNA molecules, charge transfer from DNA to graphene modifies the charge carrier density.

l^{unscreened} charge

DNA charges are less screened by ions in crumpled graphene biosensor.

 $\Delta V_{\rm D} = \frac{e\Delta n}{C_{\rm T}} = \frac{eN_{\rm c}}{C_{\rm T}}$

- Ionic layer forms further away from the concave graphene because of the stronger confinement.
- □ The least ionic screening is observed in the concave region.

□ As change in the bandgap the Dirac shift increases.

 $\Delta V_{\rm D} \propto \Delta n \propto f(E_{\rm g}^{\rm Graphene+DNA} - E_{\rm g}^{\rm Graphene})$

Case		Flat graphene	Crumpled zigzag graphene	Crumpled armchair graphene
No DNA		0 (GW: 0)	Metal (GW: metal)	0.1325 (GW: 0.4224)
	Orientation I	0.0046 (GW: 0.8535)		0.1434 (GW: 1.7641)
	Orientation II	0	Metal	0.1430 (GW: 0.5508)
	Orientation III	0		0.1491
о •	Orientation I	0.0053 (GW: 0.8568)		0.1418 (GW: 1.7493)
	Orientation II	0	Metal	0.1434
	Orientation III	0		0.1467
G	Orientation I	0.0049 (GW: 0.8518)		0.1522 (GW: 1.7504)
	Orientation II	0	Metal	0.1481
	Orientation III	0		0.1305
T	Orientation I	0.0054 (GW: 0.8562)		0.1485 (GW: 1.7477)
	Orientation II	0	Metal	0.1474
	Orientation III	0		0.1448

DFT and GW simulations showed a significant bandgap change in case of the crumpled graphene.

□ Crumpled graphene was able to detect very low concentration of interleukin-6 (IL-6) and COVID-19 related proteins.

Water on functionalized graphene

□ The interactions between water and graphene are crucial in various applications.

Water desalination Suk & Aluru. The Journal of Physical Chemistry Letters 1 (10) : 1590-1594 (2010).

Electromechanical pumps Farimani, Heiranian, & Aluru, Scientific reports, 6(1), 1-6 (2016).

Developing accurate force field parameters is important to model the interactions between water and graphene.

Wu & Aluru. The Journal of Physical Chemistry B, 117(29), 8802-8813 (2013).

Experimentally the wetting contact angle of water on graphene shows inconsistency.

Son, Lee, Han, ... & Hong. Nano letters, 20(8), 5625-5631 (2020).

Son, Buzov, Chen, Sung,... & van der Zande. Advanced Materials, 31(39), 1903424 (2019).

Prydatko, Belyaeva, Jiang,... & Schneider. Nature communications, 9(1), 1-7 (2018).

□ Computational work is limited to the presence of accurate □ Then fit the obtained vdW energies to Lennard-Jones potentials: nonbonding interaction parameters.

□ Using Young's equation, we extrapolate the macro-droplet contact angle (equivalent to experimental angle):

□ The average macro-droplet contact angle for GR, HGR, and FGR is 36.2, 54.7, and 73.8 degrees, respectively.

- □ The computed interfacial density and friction factor follow the contact angle trend ($\theta_{\infty}^{FGR} > \theta_{\infty}^{HGR} > \theta_{\infty}^{GR}$).
- □ A slip length of 138.3, 49.2, and 25.7 nm is observed on the interface of FGR, HGR, and GR, respectively.

- The obtained surface energies support the computed wetting behavior using MD.
- Finally, the electrostatic potential profile shows graphene has largest negative energy (attractions) compared to the other surfaces.

Conclusion

- Our simulations focus on investigating multiscale and multi-physics problems in nanotechnology applications.
- □ We developed a crumpled graphene biosensor which is about 10,000 times more sensitive than prior biosensors and extended the technology to detect COVID-19.
- U We investigated the coupling between mechanics and electronics in the crumpled graphene.
- □ We developed accurate force field parameters to describe the interactions between water and functionalized graphene.
- □ Our developed parameters show that chemical modification makes graphene more hydrophobic $(\theta_{\infty}^{FGR} > \theta_{\infty}^{HGR} > \theta_{\infty}^{GR}).$

Thank you!