Data-driven efficient surrogate-assisted evolutionary method for multi-objective optimization of high-dimensional neural dynamical systems

- August 3, 2023
- Ivan Raikov, Ivan Soltesz
 - Stanford University

Overview: Biophysical modeling of hippocampal networks at full scale

Surrogate-assisted optimization overview

Input j

Gaussian Process Regression for Surrogate Modeling

Gaussian processes provide methods for regression modeling by defining a conditional probability distribution over a number of functions that represent a given collection of points.

Х

- Underlying function
- Mean of posterior

Training input-target pairs $\{(x_i, f_i | i = 1, ..., n)\}$

evaluation

https://www.strong.io/blog/evolutionary-optimization

Surrogate Optimization Case Study: Peaks function (1)

Surrogate Optimization Case Study: Peaks function (2)

Objective: find the minimal value(s) of the function

$$z = 3(1-x)^{2}e^{-x^{2}-(y+1)^{2}} - 10\left(\frac{x}{5} - x^{3} - y^{5}\right)e^{-x^{2}-y^{2}} - \frac{1}{3}e^{-(x+1)^{2}-y^{2}}.$$
epoch = 1
epoch = 2
epoch = 3
epoch = 4
$$0 = 25$$

$$0 = 25$$
generation

B)

	Х	Y	Z
True minimum	0.3061	-1.5306	-6.3898
Surrogate minimum	0.1	-1.5632	-6.3001

P. F. Pinsky, and J. Rinzel, "Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons." J. Comput. Neurosci. 1994

L.A. Atherton, L. Y. Prince, K. Tsaneva-Atanasova. Bifurcation analysis of a two-compartment hippocampal pyramidal cell model. J Comput Neurosci. 2016

Surrogate optimization of biophysical neuron models based on the Pinsky-Rinzel model formalism

$$\begin{split} C_m V_s' &= -I_{ ext{Leak}}(V_s) - I_{ ext{Na}}(V_s, h) - I_{ ext{K-DR}}(V_s, +(g_c/p)(V_d-V_s) + I_s/p) \ &= -I_{ ext{Leak}}(V_d) - I_{ ext{Ca}}(V_d, s) - I_{ ext{K-AHP}}(V_d - I_{ ext{K-C}}(V_d, Ca, c) - I_{ ext{Syn}}/(1-p)) \ &= +(g_c/(1-p))(V_s-V_d) \ &= +I_d/(1-p) \end{split}$$

Surrogate optimization of Pinsky-Rinzel models of neurons in the dentate gyrus: Mossy Cell

Comparison of locally optimal solutions

Surrogate optimization of a model of a network of the dentate gyrus (1)

Surrogate optimization of a model of a network of the dentate gyrus (2)

Surrogate optimization of a model of a network of the dentate gyrus (3)

Results collected:	1004	
Total walltime:	12.42 hours	
Mean time per call:	1.3 hours	
Std. dev. of time per call:	0.19 hours	
Mean calls per worker:	7.8 [min 7 max 9]	
Number of processes:	28544 (1024 nodes; 223 processes worker)	
Number of workers:	127	

Surrogate optimization of a model of a network of the dentate gyrus (4)

Surrogate optimization of a model of a network of the dentate gyrus (5)

Summary

Distributed surrogate assisted optimization toolbox:

Prannath Moolchand

Ivan Raikov

Ivan Soltesz

https://github.com/iraikov/dmosopt

NIH BRAIN 1U19NS104590-01

Towards a Complete Description of the Circuitry Underlying Sharp Wave-Mediated Memory Replay

NIH BRAIN 1U19NS104590-01

Towards a Complete Description of the Circuitry Underlying Sharp Wave-Mediated Memory Replay

ON for empirically-based simulations of neurons and networks of neurons

