LEVERAGING FRONTERA IN EXTREME FIDELITY MODELING OF STORM SURGE IN TEXAS AND ACROSS THE GLOBE
Outline

• Motivation and Background
• Mathematical Model
• Development of Computer Model(s)
• Results
• Concluding Remarks
Background

- Storm surge from tropical cyclones (hurricanes) can lead to extensive material and human damages
- Texas and the other gulf states are particularly vulnerable due to the frequency of storms in the Gulf of Mexico
- 1000s of deaths and billions in damage since record keeping began in 1829

Source: https://www.weather.gov/hgx/projects_ike08_bolivar2
Recent storms are accompanied by heavy rains

-> “Compound flooding”:

- Interaction between two or more sources of floodwaters

- Example: Hurricane Harvey (2017) - (minor) storm surge in Galveston Bay blocked drainage of rainfall runoff and amplified inundation

Source: http://sites.utexas.edu/climatesecurity/2020/03/25/flooding-from-all-directions-how-compound-flooding-threatens-urban-areas-in-oceania/
Motivation / Project 1

• Develop computer models that cover the entire Texas coastline area:
 - Rivers
 - Floodplains
 - Ocean
• Identify past hurricane events
• Data collection and processing of inputs to the model, including:
 - Meteorology
 - River flows
• Perform computations for each identified event:
 - Storm surge only
 - River flooding only
 - Compound
• Post process results to identify the transitional zones between the 3 types of floods
Motivation / Project 2

- Develop computer models for operational forecasting of storm surge in Texas and all oceans in the world
Why Frontera?

• When a disturbance in the ocean becomes well-enough formed, the National Hurricane Center begins issuing “guidance.” These are issued every 6 hours and give predictions about the future track and intensity of the storm.

• Once a storm forms, the ADCIRC real-time forecaster group led by our colleague Jason Fleming in Louisiana starts doing simulations. The forecast system is automated (ADCIRC Surge Guidance System or ASGS)

• When a storm approaches the coast, fast and accurate predictions of surge is critical for emergency management and planning.

• Current storm surge forecasting model currently used on Stampede2 takes about 2 hours on 2496 skx cores

• The same model runs in less than 1 hour on 2240 cores on Frontera
Mathematical Model

• “Shallow water”—a body of water where the horizontal length scale is much larger than the depth. Much of the ocean is “shallow.”

• Shallow water mathematical models date back to Laplace in 1775.

• Computer modeling of shallow water bodies goes back 40-50 years. These were limited in scope by computer power and algorithms.

• Supercomputers and improved algorithms made large-scale modeling possible in the late 1990’s.

• Ocean and coastal models are now used worldwide for a variety of studies. Each model has its strengths and weaknesses.
The Physics and Mathematics: Long and Short Waves

- Long waves
- Short waves (wind driven)

Shallow Water Quantities

\[H(x) = \zeta(x) + h_b(x) \]

\(\zeta = \) surface elevation (positive above geoid)
\(h_b = \) bathymetric depth (positive below geoid)
\(H = \) total water depth (strictly positive)
Long Waves: (2D) Shallow Water Equations

The Shallow Water Equations

\[
\begin{align*}
\frac{\partial \zeta}{\partial t} & + \frac{\partial (Hu)}{\partial x} + \frac{\partial (Hv)}{\partial y} = 0 \\
\frac{\partial (Hu)}{\partial t} & + \frac{\partial (Hu^2 + \frac{1}{2}g(H^2 - h_b^2))}{\partial x} + \frac{\partial (Huv)}{\partial y} = g\zeta \frac{\partial h_b}{\partial x} + F_x \\
\frac{\partial (Hv)}{\partial t} & + \frac{\partial (Huv)}{\partial x} + \frac{\partial (Hv^2 + \frac{1}{2}g(H^2 - h_b^2))}{\partial y} = g\zeta \frac{\partial h_b}{\partial y} + F_y
\end{align*}
\]

where

\(u, v = \) depth-averaged horizontal velocities

\(F_x, F_y = \) external forcing, including: bottom friction, winds/pressure, Coriolis, waves ...

Modeling Issues

• Driving forces: wind and atmospheric pressure, Coriolis, tides
• Complex coastlines: large, rough domains and complex boundaries
• Highly varying bathymetry and overland topography
• Wetting and drying (shallow water equations invalid for H->0)
• Bottom friction/drag
• Interaction of water with levees and other structures
• Shallow water equations must be solved using numerical methods
Advanced Circulation Computer Model (ADCIRC)

- Developed for tidal flows by Luetttich and Westerink in the early 1990’s based on earlier work by Lynch, Gray and Kinnmark\(^1\)
- Parallelized in mid 1990’s (MPI parallelization)
- First applied to hurricanes for a hindcast study of Hurricane Betsy (1968) for the US Army Corps of Engineers to develop a flood protection system in New Orleans
- Hurricane Katrina (2005) led to extensive post-Katrina development and validation
- Used for FEMA flood insurance studies
- Used for hurricane protection studies in response to Katrina, Sandy, and Ike
- Now used operationally for hurricane forecasting

Advanced Circulation Computer Model (ADCIRC)

- Spatial discretization of the shallow water equation using the finite element method on unstructured triangular meshes
 - Bubnov-Galerkin method with linear polynomial basis functions
- Temporal discretization using implicit-explicit finite difference methods
 - Nonlinear terms all handled explicitly
- Executes on large-scale High-Performance Computing platforms with scaling beyond 10,000+ cores
- Takes into account man-made coastal protection structures such as levees using the weir formula
- Actively developed by a large community of users
Project 1 – New Compound Flooding Texas Mesh

- Extreme resolution of the Texas coast (rivers and floodplains)
- 8 million nodes, 16 million triangular finite elements
- Validated for storm surge during past hurricanes (focus on Ike 2008)
- Flooding from rain induced runoff is modeled using river flows from major watersheds
Project 1 – New Compound Flooding Texas Mesh

Mesh contains:
• Bathymetry and topography
• Spatially variable distribution of land and sea floor characterization (Manning’s n parameter)
• Tree cover information
• Levees and other build protection structures
Project 1 – Mesh Details

(a) Houston-Galveston

(b) Beaumont
Project 1 – Boundary Conditions

- **Open boundary condition**: nodes on the boundary specifying time-dependent water elevation, such as tides
- **Zero-flux boundary condition**: used for land and islands
- **Normal flux boundary condition**: nodes on the boundary or inside the domain specifying time-dependent flow rates, i.e., rivers:
 - 45 rivers in Texas are added as normal flux boundary conditions, including major ones like Sabine, Neches, Trinity, etc.
 - Most of the data obtained from USGS time series records and converted to ADCIRC format
 - Missing data is handled using trend analysis of gauges as well as TxRR model results provided by TWDB and interpolation in time
Project 1 – Validation of Hurricane Ike (2008)

- Strong category 2 storm, made landfall at Galveston, TX
- Produced 10-20 ft. of surge along the upper Texas coast and inland 16 km.
- Simulation is a 10 day hindcast using data-assimilated winds provided by Ocean Weather, Inc.
- Simulations performed at the Texas Advanced Computing Center using the Frontera Machine
 - Highly resolved in TX: 8M nodes, 16M elements, 2 second time step (2 hrs)
- Benchmark for validation are results obtained using the current operational forecasting ADCIRC mesh:
 - Highly resolved in TX and LA: 9M nodes, 18M elements, 1 second time step (5 hrs on Stampede2)
Project 1 – Validation of Hurricane Ike (2008)

Current forecasting mesh

New mesh
Project 1 – Validation of Hurricane Ike (2008)
Project 1 – Validation of Hurricane Ike (2008)
Project 1 - Stress Test of the Model

Hurricane Ike surge

Hurricane Ike surge + 500,000cfs in all rivers (breaks old mesh)
Project 1
Project 1 – Past events

Tracks of 14 historic hurricanes
Project 1 – Forcing data

• Winds and pressure are generated using a parametric hurricane vortex model, Generalized Asymmetric Holland model, e.g. for pressure:

\[P(r) = P_c + \| (P_n - P_c) e^{-A/r^B} \]

• Parameters are all taken from the National Hurricane Center “Best Track” hindcast from the Revised Hurricane Database

• River flow data is obtained from NOAA and USGS gauges in the 45 rivers
Results – Hurricane Harvey (2017)

• Costliest hurricane on record (tied with Katrina)
• Maximum storm surge: 8 ft. near Port Aransas
• Rainfall in Houston up to ~50 inches
• Simulation dates: August 17 - September 2, 2017
Results – Hurricane Harvey (2017)
Results – Hurricane Harvey (2017)

(a) Storm surge only

(b) Storm surge + river flows
Results – Hurricane Ike (2008)

(a) Storm surge only

(b) Storm surge + river flows
Results

Hurricane Ike

Hurricane Harvey
Project 1 Takeaways

• New ADCIRC mesh capable of incorporating riverine runoff in hindcasting and studies
• New ADCIRC mesh to be used for operational forecasting of storm surge
• Currently post-processing the results to ascertain the locations of the transitional zones
• At present state, we have performed ~ 150 hurricane simulations for this project (hundreds more to come
• Without Frontera, using these meshes and methods would be impractical due to the high computational burden
Project 2 - Global Surge Modeling

• Currently working with The University of Notre Dame and US National Oceanographic and Atmospheric Administration (NOAA) to develop and provide global ocean storm surge forecasts

• “Global Storm and Tide Operational Forecast System” (GSTOFS) https://dylnwood.github.io/GSTOFS-develop/

• Model is run operationally at 2am (EST) on Frontera and produces a 5-day hindcast and a 7-day forecast (takes ~1.25 hours vs. ~10 hours previously on Notre Dame cluster)

• Hindcast data is validated against tide and water level gauges from NOAA (US coast) and UNESCO (rest of the world)
Project 2 - Global Model Data

- 12.7 million nodes, 24.8 million triangular elements
- Resolution: 40km in the oceans, floodplains: ~100m, US floodplains ~80m
- 13 km resolution Global Forecast System (GFS) wind and air pressure forcing
- Sea ice coverage also from GFS
- Model is initialized with two-day data assimilated measurements
- 12 second time step (fully explicit)
Project 2 - Global Model Data

- 12.7 million nodes, 24.8 million triangular elements
- Resolution: 40km in the oceans, floodplains: ~100m, US floodplains ~80m
- 13 km resolution Global Forecast System (GFS) wind and air pressure forcing
- Sea ice coverage also from GFS
- Model is initialized with two-day data assimilated measurements
- 12 second time step (fully explicit)
Project 2 - Global Model Elevation Forecast
Project 2 - Global Model Elevation Gauges
Concluding Remarks

• Frontera is a vital resource in the development and operation of both local and global storm surge models
• Frontera has allowed us to develop models that cover larger areas than ever before with unprecedented detail and resolution
• For future hurricane seasons, we plan to use the newly developed mesh of Texas in operational storm surge forecasting using Frontera
• Frontera allows us to perform forecasts in about half the time needed in the recent past -> An hour extra for emergency planners and managers during storm events
Acknowledgements

• Clint Dawson, Mark Loveland, Chayanon (Namo) Wichitrnithed, and Jennifer Proft from the Oden Institute
• Joannes Westerink, Coleman Blakeley, Maria Terasa Contreras Vargas, and Dylan Wood from The University of Notre Dame
• Amin Kiaghadi, Srikanth Koka, and Saul Nuccitelli from The Texas Water Development Board
• Funding from the Texas Water Development Board, contract no. 2201792620
• Funding from the US National Science Foundation PREEVENTS program grant no. 1855047.
• Supercomputing resources and support at Frontera through the allocations “ADCIRC”, DMS21031, and DMS23001.