OUR AMAZING BRAIN

http://research.vtc.vt.edu/news/2013/feb/13/brain-awareness-week-designed-highlight-advances-b/

Neurons form amazing networks

www.the-scientist.com

<u>neuronico.net</u>

Synaptic transmission occurs at synapses

cjonesbvis518.wordpress.com

Synaptic vesicle fusion is key for interneuronal communication

TWO fundamental jobs for the release machinery: Stimulate AND control membrane fusion

Synaptic Cleft

Structures and Ca²⁺ binding modes of the synaptotagmin-1 C₂ domains

Shao et al. Science 273, 248 (1996) Shao et al. Biochemistry 37, 16106 (1998) Ubach et al. EMBO J. 17, 3921 (1998) Fernandez et al. Neuron 32, 1057 (2001)

Synaptotagmin I acts as a Ca2+ sensor in neurotransmitter release

In vitro Ca2+-dependent phospholipid binding

In vivo Ca2+-dependence of neurotransmitter release

Fernandez-Chacon et al. Nature 410, 41 (2001)

The Nobel Prize in Physiology or Medicine 2013 James E. Rothman, Randy W. Schekman, Thomas C. Südhof

The Nobel Prize in Physiology or Medicine 2013

Photo: © Yale University James E. Rothman

Photo: H. Goren. © HHMI Randy W. Schekman

Photo: © S. Fisch Thomas C. Südhof

The Nobel Prize in Physiology or Medicine 2013 was awarded jointly to James E. Rothman, Randy W. Schekman and Thomas C. Südhof *"for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells"*.

Textbook model of SNARE function in synaptic vesicle fusion

Weber et al. (1998) Cell 92, 759

Sutton et al. (1998) Nature 395, 347

Can the neuronal SNAREs alone induce membrane fusion in less than < 60 μs?

Hernandez et al. (2012) Science 336, 1581

Coarse-grained MD simulations of SNARE-mediated membrane fusion assumed continuous SNARE helices

1049

ONLINE LIBRARY

Caught in the Act: Visualization of SNARE-Mediated Fusion Events in Molecular Detail

Herre Jelger Risselada, Carsten Kutzner, and Helmut Grubmüller*^[a]ChemBioChem 2011, 12, 1049 – 1055© 2011 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim

A) B) 1 Comparison of the second s

Short linker insertions in synaptobrevin allow robust exocytotic burst

All-atom molecular dynamics simulations with flexible linkers

Rizo et al. (2022) eLife 11, e76356

Four trans-SNARE complexes with unstructured linkers bridging a vesicle and a planar bilayer

Extended vesicle-flat bilayer interface formed after 280 ns resembles liposome-liposome interfaces observed by cryo-EM

Rizo et al. (2022) eLife 11, e76356

Hernandez et al. (2012) Science 336, 1581

Simulation with kinked helices at linkers: bilayer-bilayer contact but no initiation of lipid mixing in 2 μ s

PP insertion between SNARE motif and juxtmembrane linker of synaptobrevin strongly disrupts liposome fusion

Hu et al. (2020) Front Cell Dev Biol, 8, 609708

Simulation with zippered linkers

100 ns

A 22:6 acyl chain starts splaying next to a zippered linker

150 ns The 22:6 acyl chain is splayed but nothing remarkable happens there for hundreds of ns

350 ns

Another 22:6 acyl chain starts splaying next to another zippered linker

The splayed 22:6 lipid contacts two 20:4 lipids next to a zippered linker, forming a hydrophobic seed

450 ns

A stalk is formed within 200 ns

TWO fundamental jobs for the release machinery: Stimulate AND control membrane fusion

Synaptic Cleft

Ca²⁺- and PIP₂-dependent dissociation of Synaptotagmin-1 from the SNARE complex may be crucial to trigger neurotransmitter release

Voleti et al. (2020) eLife 9, e57154

Simulation of primed synaptotagmin-1-SNARE-complexin complexes

SNARE complexes Synaptotagmin-1 C2AB complexin-1(27-72) no Ca²⁺

5 million atoms Including solvent

Rizo et al. (2022) eLife 11, e76356

Complexin-1 bumps with the vesicle C-terminal zippering of the SNARE complex is slow

Rizo et al. (2022) eLife 11, e76356

Both synaptotagmin-1 C₂B and the SNARE complex interact extensively with the flat bilayer

Synaptotagmin-1 C₂ domains bridging two membranes hinder the action of the SNAREs in drawing them together

Synaptotagmin-1 C₂ domain Ca²⁺-binding loops binding two membranes hinder the action of the SNAREs in drawing them together

Induction of membrane curvature by synaptotagmin-1 C₂ domains also seems highly unlikely

Primed synaptotagmin-1-SNARE complex

Diagnostic HSQC cross-peaks reflect binding of synaptotagmin-1 to the SNARE complex through two regions of the primary interface

R322E/K325E/R398Q/R399Q mutation abolishes synaptotagmin-1-SNARE complex binding

Voleti*, Jaczynska* and Rizo (2020) Elife 9. e57154

Y338D mutation abolishes binding to region I But binding to R398/R399 remains!!!!!

Voleti*, Jaczynska* and Rizo (2020) Elife 9. e57154

Model of fast (μ s) Ca²⁺-evoked neurotransmitter release

Model of fast (µs) Ca²⁺-evoked neurotransmitter release

KLAUDIA JACZYNSKA

MILO LIN LEVENT SARI WONPIL IM YIFEI QI

THOMAS SUDHOF CHRISTIAN ROSENMUND

Pathways and LARC allocations Frontera (TACC) - XSEDE NIH Welch Foundation Virginia Lazenby O'Hara Chair

Reminder of primed state: image of beginning of the movie

Flexible linker insertions impair but do not abolish liposome lipid mixing

McNew et al. (1999) Mol. Cell 4, 415

Spontaneous release is enhanced by insertion between SNARE motif and Jx linker and strongly enhanced by insertion between Jx linker and TM

Vardar et al. (2022) eLife 11, e78182