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Wave Applications
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Tokamak RF heating (electromagnetics)

Medical ultrasound (acoustics) Seismic simulation (elasticity)



Wave Simulation (Time-Domain)
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Time Domain Simulation
• Starts from known initial state
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Wave Simulation (Frequency-Domain)

11

Frequency Domain Simulation
• Separates problem into independent frequencies (ω)

• Each frequency requires an indefinite linear solve

• Produces a complex-valued field ( �𝑢𝑢𝜔𝜔) for each frequency

(1)
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Frequency Domain Simulation
• Separates problem into independent frequencies (ω)

• Each frequency requires an indefinite linear solve

• Produces a complex-valued field ( �𝑢𝑢𝜔𝜔) for each frequency

• Time-harmonic field recovered via (1)

(1)



Wave Simulation (Frequency-Domain)
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Time-domain solution can be reconstructed by summing 
over frequencies:



Time domain (implicit):
• Efficiency

• Elliptic solve per timestep 
• Often relies on (pre-computed) sparse matrix factorizations
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Frequency domain:
• Scalability

• Direct solvers: factored in O(ω6), applied in O(ω4)
• Leading scalable iterative solvers achieve O(ω4) complexity 
• Previously limited to ~1 billion degrees of freedom

Challenges

Time domain (explicit):
• Stability

• Timestep depends on wavespeed contrast, minimum element size (grid spacing), etc.
• Often requires many timesteps, especially for high-contrast problems

Leading methods for all approaches have same O(ω4) complexity (in 3D) 



Fast Frequency-Domain Solver
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Fast Frequency-Domain Solver1

Key Points:
• Iterative solver (PCG iteration)
• Multigrid preconditioner
• Based on discontinuous Petrov-Galerkin 

(DPG) finite element method of 
Demkowicz and Gopalakrishnan2

1 J. Badger. Scalable DPG multigrid solver with applications in high-frequency wave propagation. Ph.D. Thesis, The University of Texas at Austin, 2024.
2 Leszek Demkowicz and Jay Gopalakrishnan. A class of discontinuous Petrov–Galerkin methods. Part I: the transport equation. Comput. Methods Appl. Mech. Enrg.,

199(23-24):1558–1572, 2010. 



DPG (Linear Acoustics)
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DPG:

Galerkin:

Discrete System:

Discrete System:

• DPG element matrices have ~10x as many DOFs (as Galerkin)
• Can be condensed onto ‘trace’ DOFs on element level: 

• Requires assembling and inverting large dense matrices
• Condensed system 2x has many unknowns (4x as many non-zeros)
• But resulting system is Hermitian positive definite

Example: 4th order elasticity
• Assembling blocks of full DPG system:  ~0.2s
• Condensing onto trace DOFs:    ~0.6s

Assembling a single 4th order element can take ~1s 
(and scales as p9)



Frontera-Enabled Outcomes
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Scale (GO_3D_OBS Model1)

• Visco-acoustic simulation (~6x contrast)

• 15 Hz (1,000 wavelengths)

• 800 billion DOFs (4th order)

1 Andrzej Górszczyk and Stéphane Operto. GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging
method assessment and next-generation 3D survey design (version 1.0). Geosci. Model Dev., 14(3):1773–1799, 2021. 
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1 Andrzej Górszczyk and Stéphane Operto. GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging

method assessment and next-generation 3D survey design (version 1.0). Geosci. Model Dev., 14(3):1773–1799, 2021. 

Scale (GO_3D_OBS Model1)

• 460,000 cores (8,192 Frontera nodes)

• ~500x larger than any previous result
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Scale (SEAM Arid Model1)

1 C. Regone, J. Stefani, P. Wang, C. Gerea, G. Gonzalez, and M. Oristaglio. Geologic model building
  in SEAM Phase II — Land seismic challenges. The Leading Edge, 36(9), 738–749, 2017.

• HTI visco-elastic model (10x contrast)

• 25 Hz (~300 shear wavelengths)

• 7.4 Billion DOFs (~20x reduction vs. uniform mesh)
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• 14,336 cores (256 Frontera nodes)

• ~20x larger than any previous result
(on basis of DOFs, for 3D frequency-domain elasticity)

Scale (SEAM Arid Model)
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LRAC Allocation
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Directions
1. Efficient & accurate simulation of topography/small-scale heterogeneity
2. Design of distributed acoustic sensing (DAS) installations in complex geological settings
3. In-situ fracture imaging (applications in CCS, engineered geothermal, etc.)

“Efficient seismic simulation in challenging geological 
environments with a scalable frequency-domain solver”



25Model Courtesy of Ahmad Ramdani, Saudi Aramco

Desert Environment with Buried Topography

• Visco-acoustic model 

• High contrast (ca. 10x)

• Buried topography (flat surface)

• Attenuating near surface (Qp=40)

• Frequencies 2-32 Hz simulated, 
then Fourier transformed 
(0.133 Hz spacing, 225 frequencies in total)
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Flat Sand Model

Surface Source Buried Source (100m depth)
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Desert Environment with Dunes

• Dune topography added to sand layer 
(from NASA shuttle radar topography mission)

• Remainder of model unchanged

NASA radar tomography mission N22E054.hgt, 
 selected region boxed 
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Dunes

Surface Source Buried Source (100m depth)









Insights
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• Other promising frequency domain solvers include:
• Domain decomposition (e.g. ORAS)
• Complex-shifted Laplacian + multigrid 
• Many others

• Leading scalable solvers all have the same O(ω4) complexity
• The rest is a game of constants (and DPG starts with a 4x disadvantage)
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• Other promising frequency domain solvers include:
• Domain decomposition (e.g. ORAS)
• Complex-shifted Laplacian + multigrid 
• Many others

• Leading scalable solvers all have the same O(ω4) complexity
• The rest is a game of constants (and DPG starts with a 4x disadvantage)

Points of Differentiation:
• Dense matrix operations (no sparse matrices)

• Adaptive mesh refinement
• Scale (Frontera + fully distributed data structures)



Sparse is Slow
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Method 2: Sparse matrix multiplication via element-wise block operations

Example: 4th order DPG acoustics (~200 x 200 matrix blocks)

• Method 1: MKL spBLAS
• 64-bit indices
• Complex single-precision

• Method 2: Element-wise block (dense) operations
• Complex single-precision
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Example: 4th order DPG acoustics (~200 x 200 matrix blocks)

• Method 1: MKL spBLAS
• 64-bit indices
• Complex single-precision

• Method 2: Element-wise block (dense) operations
• Complex single-precision

Results (Frontera CLX node)

1 core 1.4x

28 cores (OpenMP) 9.1x

28 cores + load batching 
(16 loads)

21x

Speed up of block-wise matrix multiplication relative to sparse

Reasons:
• Dense blocks are Hermitian (Stored in packed or RFP format, then unpacked)

• Sparse indices further double bandwidth per entry (for 64-bit indices w/ complex single precision)

• Less vectorizable (dot vs. outer product) 

• Often higher cache miss rate



Sparse is Slow
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Sparse Alternatives:
• Matrix-free (partial assembly; CEED, MFEM, etc.)

• Memory efficient
• Amenable to modern accelerators
• Restrictive (tensor-product elements, uniform p, etc.)
• Does ~2-5x as many operations
• Requires point smoothers

• Storing unassembled dense element matrices (single RHS)
• More general (hybrid & p-adaptive meshes, etc.)
• Block smoothers
• Memory inefficient 
• Fewer operations but bandwidth limited (GEMV)
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Sparse Alternatives:
• Matrix-free (partial assembly; CEED, MFEM, etc.)

• Memory efficient
• Amenable to modern accelerators
• Restrictive (tensor-product elements, uniform p, etc.)
• Does ~2-5x as many operations
• Requires point smoothers

• Storing unassembled dense element matrices (batched RHS)
• More general (hybrid & p-adaptive meshes, etc.)
• Block smoothers
• Fewer operations (GEMM)
• System memory amortized over RHS’s 

• Flexible PCG iteration requires at least 6 arrays per RHS
• GMRES often requires many more arrays per RHS

• (Variable sized) block sparse matrices
• In context of finite elements, blocks via nodal interactions



Future Directions & Summary

36



37

Summary

• Scalable solver + Frontera enabled simulation of frequency domain at unprecedented scale    
(~500x larger than any previous result we are aware of)

• Adaptive meshing + performant implementation can make the frequency-domain approach competitive 
(even in time domain data where hundreds of frequencies required)

• LRAC allocation enabling high-impact research on contemporary challenges:
• 4D seismic noise and repeatability in on-shore monitoring for carbon capture and storage (CCS)
• Design of distributed acoustic sensing (DAS) installations
• In-situ fracture imaging (applications in CCS, engineered geothermal)

Open-source release of dissertation code intended soon
(disclosure completed in April 2024, awaiting signatures & decisions)
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Final Thoughts
• Frequency-domain approach will be hard to beat in frequency-sparse contexts

• Narrow bandwidth vibratory seismic sources
• Plasma RF heating
• Design of micro-optical filters, etc.
• (and contexts with attenuation)

• Alternative discretizations may further improve efficiency of frequency-domain approach
• DPG enables use of PCG iteration but is expensive (>100x slower assembly, 4x more non-zero entries vs. continuous Galerkin)
• Block-wise dense operations and adaptivity largely responsible for surprising performance (neither are limited to DPG)
• May require re-thinking the role of sparse matrices/factorizations in existing solvers

• Implicit time-domain methods + adaptivity may have potential in challenging contexts 
• Current practice dominated by explicit finite difference & spectral element methods:

1. Less amenable to adaptivity
2. Time-step limited by smallest element size

• May require re-thinking the role of sparse matrices/factorizations

• Performant code requires work that is often less-incentivized by academic model
• Implementation and optimization work can be difficult to publish; often happens in industry/at national labs
• TACC has been an invaluable resource in bridging this gap
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