

Massive Black Holes Mergers at low-redshift Universe: predictions from cosmological simulation Astrid

Yihao Zhou Carnegie Mellon University

Frontera LRAC AST20015

Team Members: Tiziana Di Matteo (PI; CMU), Simeon Bird (Co-PI; UCR) Rupert Croft (CMU), Yueying Ni (Harvard) Nianyi Chen (IAS), Patrick Lachance (CMU), Yu Feng (UCB) Mahdi Qezlou (UCR), Mingfeng Ho (UCR), Yanhui Yang (UCR)

ADVANCED STUDY

Growth of Massive Black Holes (MBHs) and Galaxies across cosmic history

Mysteries: over-massive MBH

Image from: M. Habouzit

Discovery space for MBH

The parameter space to be explored by future GW detectors

ASTRID: from Cosmic Web to Massive Black Holes

ASTRID: the uniquely large volume and resolution

Higher resolution: resolve physical process on smaller scales

Why Frontera is important for Astrid

- Extreme memory request
- Over 10¹¹ particles evolving almost the whole Universe Age
- 2048 CLX computer nodes
- 4096 MPI ranks × 28 threads per MPI rank
- Used ~ 12 M SU to z=0.5

Physical Models in ASTRID

- Gravitational evolution: TreePM code
- Pressure-entropy SPH
- massive neutrinos
- Primordial cooling and metal-line cooling
- Multi-phase interstellar medium
- H2 based star formation
- Metal return from the massive stars
- Supernovae wind feedback
- Re-ionization models
- Inhomogeneous hydrogen reionization
- Helium reionization
- Power-law seeding for BHs
- AGN accretion and feedback
- Wide MBH range: $10^4 \sim 10^{11} M_{\odot}$
- Accurate dynamics for BH mergers

Star formation & Gas cooling

pressure-entropy SPH

Supernova

Black hole dynamics

Reionization

AGN activity

Astrid scientific legacy

The formation of Massive Black Holes

Ni+2022, Chen+2022, DiMatteo+2023, Weller+2023, Hoffman+2023,

- Massive Black Holes mergers and GW Degraf+2023, Weller+2023, Hoffman+2023 Chen+2023, Chen+2024, Zhou+2024, Mukherjee+2024
- Al-assisted Super-resolution simulation
 Ni+2023, Zhang+2024
- Large-scale clustering of quasars and galaxies Dadiani+2023, Qezlou+2023
- Cosmic Reionization

Bird+2022, Davies + 2023

Mock Observations data

LaChance+2024

. . .

MBH Population in Astrid

wide mass range
consistent with observation

Ni+2024

11

MBH Merging Events in Astrid

Mergers to be detected by LISA

~98% merging events are above the LISA sensitivity

MBH Merging Events in Astrid

Mergers to be detected by LISA

Event most likely to be detected: MBH seeds (10⁶ M_☉) Equal-mass merger

MAGICS Massive black hole Assembly in Galaxies Informed by Cosmological Simulation

Chen+ 2023 Zhou+ 2024 Mukherjee+ 2024

Merge at ~1 kpc

Can we go further ?

MAGICS

(Massive Black Hole Assembly in Galaxies Informed by Cosmological Simulations)

MBH Binary Dynamics

MAGICS: Separation between the MBH binary

consistent evolution with Astrid
 resolve dynamics on smaller scales

• ASTRID simulation:

- 100 Mpc ~ 1 kpc
- Largest cosmological hydrodynamic simulations
- Host the largest population of low-redshift MBH
- A powerful tool to predict the sources of GW for upcoming LISA mission
- MAGICS
 - 10 kpc ~ 10^{-6} pc (for MBH)
 - Bridge the gap between ASTRID and MBH dynamics on smallest scales (near MBHs)

Backup Slides

Discovery space for MBH

Electromagnetic (EM) Detectors

MBH Merging Events in Astrid

Improvements in MAGICS

- Resolution
 - Better mass resolution: 500 M_{\odot} (ASTRID: $10^6 M_{\odot}$)
 - Better spatial resolution: 5 pc for stellar & DM (ASTRID: 1 kpc)
- Hydro models
 - No need for the semi-analytical sub-grid dynamical friction model
 - Circumbinary accretion

Gravity integrator:

- KETJU: Algorithmically regularized integrator
- \rightarrow able to trace the MBH down to scales of 10^{-6} pc !

Different fate of MBH pairs

stalling or merging?

25

MBH Population in Astrid:

Prediction for MBH population: luminosity function

Separation between the MBH binary

27

MBH Population in Astrid

capture the coevolution of MBH and galaxy

Ni+2024 28

MBH Merging Events in Astrid

MBH merging rates

30

