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Growth of Massive Black Holes (MBHs) and Galaxies across cosmic history

Image from esa

Time Evolution

First Black Holes
(Massive Black

Hole Seeds)

Big Bang

t=0

Today

t=13.8 Gyr
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Mysteries: over-massive MBH 

JWST:  UHZ1

redshift=10.1

𝑀BH = 4 × 107𝑀⨀

“Hulk in the

kindergarten!”

Image from: M. Habouzit

Today

(redshift=0)

100 Myr

Cosmic Age

500 Myr

1 Gyr

Massive Black 
Hole Seeds

accretion with 
Eddington limit
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The parameter space to be explored by future GW detectors

Asking for detailed and

wide-ranging simulations

to predict future

observation data!

Plot from Burke-Spolaor+2018

Discovery space for MBH

space to be explored

by EM telescopes

(JWST, ROMAN, Athena,
Rubin, Lynx, AXIS, ELT….)
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Whole box: 360 Mpc

Spatial resolution: ~1 kpc

Particle number: 𝟑× 𝟏𝟎𝟏𝟏

Dark Matter Temperature Metallicity HI fractionImage from Yueying Ni

ASTRID:
from Cosmic Web to Massive Black Holes

Massive clusters

10 Mpc

Groups of galaxies

1 Mpc

Interstellar Medium

10 kpc

Massive Black Holes:

kpc

1 pc ~ 3 light years

Cosmic Web:

>100 Mpc
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ASTRID:
the uniquely large volume and resolution

7
Larger volume: better statistics & more rare objects

Higher resolution:

resolve physical

process on

smaller scales

ASTRID
𝑵 = 𝟐 × 𝟓𝟓𝟎𝟎𝟑

Volume = 𝟓 × 𝟏𝟎𝟕 𝐌𝐩𝐜𝟑

Mass resolution = 𝟐 × 𝟏𝟎𝟔𝑴⨀
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• Extreme memory request

• Over 1011 particles evolving almost the whole 
Universe Age

• 2048 CLX computer nodes

• 4096 MPI ranks× 28 threads per MPI rank

• Used ~ 12 M SU to z=0.5

Why Frontera is important for Astrid



• Gravitational evolution: TreePM code

• Pressure-entropy SPH

• massive neutrinos

• Primordial cooling and metal-line cooling

• Multi-phase interstellar medium

• H2 based star formation

• Metal return from the massive stars

• Supernovae wind feedback

• Re-ionization models

• Inhomogeneous hydrogen reionization

• Helium reionization 

• Power-law seeding for BHs

• AGN accretion and feedback 

• Wide MBH range: 𝟏𝟎𝟒~𝟏𝟎𝟏𝟏𝑴⊙

• Accurate dynamics for BH mergers
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Physical Models in ASTRID

Reionization

Star formation & Gas cooling

Plot from BARBARA CATINELLA

Supernova



• The formation of Massive Black Holes

Ni+2022, Chen+2022, DiMatteo+2023, 

Weller+2023, Hoffman+2023, 

• Massive Black Holes mergers and GW

Degraf+2023, Weller+2023, Hoffman+2023

Chen+2023, Chen+2024, Zhou+2024, Mukherjee+2024

• AI-assisted Super-resolution simulation 

Ni+2023, Zhang+2024

• Large-scale clustering of quasars and galaxies 

Dadiani+2023, Qezlou+2023

• Cosmic Reionization 

Bird+2022, Davies + 2023

• Mock Observations data 

LaChance+2024 

…
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Astrid scientific legacy



11Ni+2024

• wide mass range
• consistent with observation

MBH Population in Astrid

Astrid
obs
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LISA sensitivity curve

GW emitted by

mergers in Astrid

~98% merging

events are above the

LISA sensitivity

Mergers to be detected by LISA

MBH Merging Events in Astrid
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Mergers to be detected by LISA

Event most likely to

be detected:

MBH seeds (106𝑀⨀)

Equal-mass merger

MBH Merging Events in Astrid
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MAGICS
Massive black hole Assembly in Galaxies Informed by Cosmological Simulation

Chen+ 2023

Zhou+ 2024

Mukherjee+ 2024



MAGICS

Astrid

Merge at ~1 kpc 
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Can we go further ?

MAGICS
(Massive Black Hole Assembly in 

Galaxies Informed by 

Cosmological Simulations)



Dynamical Friction 

Loss Cone Scatter

GW Emission 

1 kpc 100 pc 1 pc 0.01 pc

idealized simulationcosmological  
simulation

limited 
resolution

lack of self-consistent 
galaxy evolution
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MBH Binary Dynamics



100 kpc
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ASTRID

ASTRID

ASTRID

Higher resolution 

MAGICS MAGICS MAGICS MAGICS



• Movie here 

18



19

MAGICS: Separation between the MBH binary

• consistent evolution with Astrid
• resolve dynamics on smaller scales

MAGICS: can resolve

dyanmics on 𝟏𝟎−𝟔 pc scales!



• ASTRID simulation:

• 100 Mpc ~ 1 kpc

• Largest cosmological hydrodynamic simulations

• Host the largest population of low-redshift MBH

• A powerful tool to predict the sources of GW for upcoming LISA mission

• MAGICS

• 10 kpc ~ 𝟏𝟎−𝟔 pc (for MBH)

• Bridge the gap between ASTRID and MBH dynamics on smallest scales (near MBHs)
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Summary
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Backup Slides



SPHEREx

Discovery space for MBH

Lynx

ATHENA

ELT

JWST
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Roman

Gravitational Wave

(GW) Detectors

Electromagnetic (EM) Detectors

Rubin EuclidRoman

Optical

Survey
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Plot from Burke-Spolaor+2018

MBH Merging Events in Astrid

space to be explored

by EM telescopes

(JWST, ROMAN, Athena,
Rubin, Lynx, AXIS, ELT….)

MBH Mergers

in Astridre
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• Resolution 
• Better mass resolution: 500 𝑀⨀ (ASTRID: 106 𝑀⨀ )

• Better spatial resolution: 5 pc for stellar & DM (ASTRID: 1 kpc)

• Hydro models 
• No need for the semi-analytical sub-grid dynamical friction model 

• Circumbinary accretion 

•Gravity integrator:
• KETJU: Algorithmically regularized integrator 

• → able to trace the MBH down to scales of 𝟏𝟎−𝟔 pc !
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Improvements in MAGICS
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Different fate of MBH pairs
stalling or merging?



26

MBH Population in Astrid：
Prediction for MBH population: luminosity function

Ni+2024
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MAGICS

Separation between the MBH binary



28Ni+2024

MBH Population in Astrid

• capture the coevolution of MBH and galaxy
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MBH Merging Events in Astrid

MBH merging rates
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MAGICS



31

MAGICS
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MAGICS


